| | @ve RuBoard
Il .

Prasmatic
|"I'I VTALIner

Front Matter
Table of Contents
About the Author

Pragmatic Programmer, The: From Journeyman to Master

Andrew Hunt David Thomas Publisher: Addison Wesley First Edition October 13, 1999
ISBN: 0-201-61622-X, 352 pages

L Preview

Straight from the programming trenches, The Pragmatic Programmer cuts through the increasing specialization and technicalities of
modern software development to examine the core process--taking a requirement and producing working, maintainable code that
delightsits users. It covers topics ranging from personal responsibility and career devel opment to architectural techniques for
keeping your code flexible and easy to adapt and reuse. Read this book, and you' Il learn how to:

Fight softwarerot;

Avoid the trap of duplicating knowledge;

Write flexible, dynamic, and adaptable code;

Avoid programming by coincidence;

Bullet-proof your code with contracts, assertions, and exceptions,

Capture real requirements;

Test ruthlessly and effectively;

Delight your users,

Build teams of pragmatic programmers; and

Make your developments more precise with automation.

Written as a series of self-contained sections and filled with entertaining anecdotes, thoughtful examples, and interesting analogies,
The Pragmatic Programmer illustrates the best practices and major pitfalls of many different aspects of software development.
Whether you're anew coder, an experienced programmer, or a manager responsible for software projects, use these lessons daily,

http://www.informit.com/safari/author_bio.asp@ISBN=020161622X

and you'll quickly see improvementsin personal productivity, accuracy, and job satisfaction. Y ou'll learn skills and develop habits
and attitudes that form the foundation for long-term success in your career. Y ou'll become a Pragmatic Programmer.

| | @ve RuBoard

| | @ve RuBoard

I 1
Dl s
AP TEEL 0

Pragmatic Programmer, The: From Journeyman to Master

Foreword

Preface
Who Should Read This Book?
What Makes a Pragmatic Programmer?
Individual Pragmatists, Large Teams
It's a Continuous Process
How the Book Is Organized
What'sin a Name?

1. A Pragmatic Philosophy
The Cat Ate My Source Code
Software Entropy
Stone Soup and Boiled Frogs
Good-Enough Software
Y our Knowledge Portfolio
Communicate!

Summary

2. A Pragmatic Approach
The Evils of Duplication
Orthogonality
Revershility
Tracer Bullets
Prototypes and Post-it Notes
Domain Languages
Estimating

3. TheBasic Tools
The Power of Plain Text
Shell Games
Power Editing
Source Code Control
But My Team Isn't Using Source Code Control
Source Code Control Products
Debugging
Text Manipulation
Exercises
Code Generators

4. Pragmatic Paranoia
Design by Contract
Dead Programs Tell No Lies
Assertive Programming
When to Use Exceptions
How to Balance Resources
Objects and Exceptions
Balancing and Exceptions
When Y ou Can't Balance Resources
Checking the Balance
Exercises

5. Bend or Bresk
Decoupling and the Law of Demeter
Metaprogramming
Temporal Coupling
It'sJustaView
Blackboards

6. While You Are Coding
Programming by Coincidence
Algorithm Speed
Refactoring
Code That's Easy to Test
Evil Wizards

7. Before the Project
The Requirements Pit
Solving Impossible Puzzles
Not Until You're Ready
The Specification Trap
Circlesand Arrows

8. Pragmatic Projects
Pragmatic Teams
Ubiquitous Automation
Ruthless Testing
It's All Writing
Great Expectations
Pride and Prejudice

A. Resources
Professional Societies
Building aLibrary
Internet Resources
Bibliography

B. Answersto Exercises

| | @ve RuBoard

| | @ve RuBoard JEX
T :

Prasmatic
Proerammer

Pragmatic Programmer, The: From Journeyman to Master

Many of the designations used by manufacturers and sdllersto distinguish their products are claimed as trademarks.
Where those designations appear in this book, and Addison-Wedey was aware of atrademark claim, the
designations have been printed ininitid capita lettersor indl capitas.

Lyricsfrom the song "The Boxer" on page 157 are Copyright © 1968 Paul Simon. Used by permission of the
Publisher: Paul Simon Music. Lyricsfrom the song "Alice's Restaurant” on page 220 are by Arlo Guthrie, ©1966,
1967 (renewed) by Appleseed Music Inc. All Rights Reserved. Used by Permission.

The authors and publisher have taken care in the preparation of this book, but make no express or implied warranty
of any kind and assume no responsibility for errors or omissions. No liability isassumed for incidental or
consequentia damagesin connection with or arising out of the use of the information or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for specia sales. For more information, please
contact:

AWL Direct Sales

Addison Wedey Longman, Inc.

One Jacob Way

Reading, Massachusetts 01867

(781) 944-3700

Vist AWL onthe Web: http://mww.awl.com/cseng

Library of Congress Catalogtng-in-Publication Data

http://www.awl.com/cseng
http://www.awl.com/cseng

Hunt, Andrew, 1964—

The Pragmatic Programmer / Andrew Hunt, David Thomas.

p. cm.

Includes bibliographica references.

ISBN 0-201-61622-X

1. Computer programming. |. Thomas, David, 1956 .

. Title.

QA76.6.H857 1999

005.1--dc21 99-43581

CIP

Copyright © 2000 by Addison Wedey Longman, Inc.

All rightsreserved. No part of this publication may be reproduced, stored in aretrieva system, or transmitted, in any
form or by any means, eectronic, mechanical, photocopying, recording, or otherwise, without the prior written
permission of the publisher. Printed in the United States of America. Published simultaneoudy in Canada.

3456789 10—CRS—03020100

Third printing, October 2000

For Ellieand Juliet,

Elizabeth and Zachay,

Suart and Henry

| | @ve RuBoard

| | @ve RuBoard

Foreword

Asareviewer | got an early opportunity to read the book you are holding. It was greet, even in draft form. Dave
Thomas and Andy Hunt have something to say, and they know how to say it. | saw what they were doing and |
knew it would work. | asked to write thisforeword so that | could explain why.

Simply put, this book tells you how to program in away that you can follow. Y ou wouldn't think that that would be a
hard thing to do, but it is. Why? For onething, not al programming books are written by programmers. Many are
compiled by language designers, or the journalists who work with them to promote their creations. Those books tell
you how to talk in aprogramming language—which is certainly important, but that isonly asmall part of what a
programmer does.

What does a programmer do besidestak in programming language? Well, that is a deeper issue. Most programmers
would have trouble explaining what they do. Programming isajob filled with details, and keeping track of those

detail s requires focus. Hours drift by and the code appears. Y ou look up and there are al of those statements. If you
don't think carefully, you might think that programming isjust typing statementsin a programming language. Y ou
would be wrong, of course, but you wouldn't be able to tell by looking around the programming section of the
bookstore.

In The Pragmatic Programmer Dave and Andy tdll us how to program in away that we can follow. How did they
get so smart? Aren't they just asfocused on details as other programmers? The answer isthat they paid attention to
what they were doing while they were doing it—and then they tried to do it better.

Imagine that you are sitting in ameeting. Maybe you are thinking that the meeting could go on forever and that you
would rather be programming. Dave and Andy would be thinking about why they were having the meeting, and
wondering if thereis something else they could do that would take the place of the meeting, and deciding if that
something could be automated so that the work of the meeting just happensin the future. Then they would doit.

That isjust the way Dave and Andy think. That meeting wasn't something keeping them from programming. It was
programming. And it was programming that could beimproved. | know they think thisway becauseit istip number
two: Think About Y our Work.

So imagine that these guys are thinking thisway for afew years. Pretty soon they would have a collection of
solutions. Now imagine them using their solutionsin their work for afew more years, and discarding the onesthat are
too hard or don't aways produce results. Well, that approach just about defines pragmatic. Now imagine them
taking ayear or two more to write their solutions down. Y ou might think, That information would be a gold mine.
And you would beright.

The authorstell us how they program. And they tell usin away that we can follow. But thereis moreto this second
gatement than you might think. Let me explain.

The authors have been careful to avoid proposing atheory of software development. Thisisfortunate, because if they

had they would be obliged to warp each chapter to defend their theory. Such warping isthetradition in, say, the
physica sciences, where theories eventually become laws or are quietly discarded. Programming on the other hand
hasfew (if any) laws. So programming advice shaped around wanna-be laws may sound good in writing, but it fails
to satisfy in practice. Thisiswhat goeswrong with so many methodology books.

I've studied this problem for a dozen years and found the most promisein adevice caled a pattern language. In
short, a pattern isasolution, and a pattern language is a system of solutions that reinforce each other. A whole
community hasformed around the search for these systems.

Thisbook is morethan acollection of tips. It isa pattern language in sheegp's clothing. | say that because eachtipis
drawn from experience, told as concrete advice, and related to othersto form a system. These are the characteristics
that alow usto learn and follow a pattern language. They work the same way here.

Y ou can follow the advice in thisbook becauseit is concrete. Y ou won't find vague abstractions. Dave and Andy
writedirectly for you, asif each tip wasavital strategy for energizing your programming career. They makeit Smple,
they tell astory, they use alight touch, and then they follow that up with answersto questions that will come up when
youftry.

And thereismore. After you read ten or fifteen tips you will begin to see an extradimension to the work. We
sometimescal it QWAN, short for the quality without a name. The book has a philosophy that will ooze into your
consciousness and mix with your own. It doesn't preach. It just tellswhat works. But in the telling more comes
through. That's the beauty of the book: It embodiesits philosophy, and it does so unpretentioudly.

So hereit is: an easy to read—and use—book about the whole practice of programming. I've gone on and on about
why it works. Y ou probably only care that it does work. It does. Y ou will see.

—Ward Cunningham

| | @ve RuBoard

| | @ve RuBoard

Preface

This book will help you become a better programmer.

It doesn't matter whether you are alone devel oper, amember of alarge project team, or a consultant working with
many clients at once. Thisbook will help you, asan individua, to do better work. Thisbook isn't theoretical—we
concentrate on practical topics, on using your experience to make more informed decisions. Theword pragmatic
comesfrom the Latin pragmaticus—"skilled in business'—which itsdf is derived from the Greegk TPXT TELY
meaning "to do.” Thisisakbook about doing.

Programming isacraft. At itssimples, it comes down to getting acomputer to do what you want it to do (or what
your user wantsit to do). Asa programmer, you are part listener, part advisor, part interpreter, and part dictator.

Y ou try to capture usive requirements and find away of expressing them so that amere machine can do them
justice. Y ou try to document your work so that others can understand it, and you try to engineer your work so that
others can build on it. What's more, you try to do dl this against the relentless ticking of the project clock. Y ou work
amdl miraclesevery day.

Itsadifficult job.

There are many people offering you help. Tool vendors tout the miraclestheir products perform. Methodology gurus
promise that their techniques guarantee results. Everyone claimsthat their programming language isthe best, and
every operating system isthe answer to dl conceivableills.

Of course, none of thisistrue. There are no easy answers. Thereis no such thing asa best solution, beit atool, a
language, or an operating system. There can only be systems that are more gppropriate in aparticular set of
circumstances.

Thisiswhere pragmatism comesin. Y ou shouldn't be wedded to any particular technology, but have abroad enough
background and experience base to alow you to choose good solutionsin particular Situations. Y our background
sems from an understanding of the basic principles of computer science, and your experience comes from awide
range of practical projects. Theory and practice combine to make you strong.

Y ou adjust your gpproach to suit the current circumstances and environment. Y ou judge the rel ative importance of al
the factors affecting a project and use your experience to produce appropriate solutions. And you do this
continuoudly as the work progresses. Pragmatic Programmers get thejob done, and do it well.

| | @ve RuBoard

| | @ve RuBoard

Who Should Read This Book?

Thisbook isamed at people who want to become more effective and more productive programmers. Perhaps you
fed frustrated that you don't seem to be achieving your potential. Perhaps you look at colleagues who seem to be
using tools to make themsalves more productive than you. Maybe your current job uses older technologies, and you
want to know how newer ideas can be applied to what you do.

We don't pretend to have al (or even most) of the answers, nor are dl of our ideas applicablein al stuations. All we
can say isthat if you follow our approach, you'll gain experience rapidly, your productivity will increase, and youll
have a better understanding of the entire development process. And you'll write better software.

| | @ve RuBoard

| | @ve RuBoard

What M akes a Pragmatic Programmer ?

Each developer isunique, with individua strengths and weaknesses, preferences and didikes. Over time, each will
craft hisor her own persond environment. That environment will reflect the programmer'sindividudity just as
forcefully ashisor her hobbies, clothing, or haircut. However, if you're a Pragmatic Programmer, you'll share many of
thefollowing characteridics.

Early adopter/fast adapter. You haveaninginct for technologies and techniques, and you lovetrying
things out. When given something new, you can grasp it quickly and integrate it with the rest of your
knowledge. Y our confidence is born of experience.

Inquiditive. You tend to ask questions. That's neat—how did you do that? Did you have problems
with that library? What's this BeOSI've heard about? How are symbolic links implemented? You area
pack rat for little facts, each of which may affect some decision years from now.

Critical thinker. Yourardy take things as given without first getting the facts. When colleagues say
"because that's the way it's done," or avendor promises the solution to al your problems, you smell a

chdlenge.

Realistic. You try to understand the underlying nature of each problem you face. Thisredism givesyou a
good fed for how difficult things are, and how long things will take. Understanding for yoursdlf that a process
should bedifficult or will take awhileto complete givesyou the saminato keep &t it.

Jack of all trades. You try hard to be familiar with abroad range of technologies and environments, and
you work to keep abreast of new developments. Although your current job may require you to bea
specidist, you will ways be able to move on to new areas and new challenges.

Weveleft the most basic characteristics until last. All Pragmatic Programmers share them. They're basic enough to
date astips:

Tipl

Care About Y our Craft

Wefed that thereis no point in developing software unless you care about doing it well.

Tip 2

Think! About Y our Work

In order to be a Pragmatic Programmer, we're chalenging you to think about what you're doing while you're doing it.
Thisisn't aone-time audit of current practices—it's an ongoing critical gppraisal of every decison you make, every
day, and on every development. Never run on auto-pilot. Constantly be thinking, critiquing your work in red time.
Theold IBM corporate motto, THINK!, isthe Pragmatic Programmer's mantra.

If this sounds like hard work to you, then you're exhibiting the realistic characterigtic. Thisisgoing to take up some
of your vauable time—time that is probably aready under tremendous pressure. Thereward isamore active
involvement with ajob you love, afeding of mastery over an increasing range of subjects, and pleasurein afeding of
continuous improvement. Over the long term, your time investment will be repaid as you and your team become more
efficient, write code that's eser to maintain, and spend lesstime in mestings.

| | @ve RuBoard

| | @ve RuBoard HE

I ndividual Pragmatists, Large Teams

Some peoplefed that thereis no room for individudity on large teams or complex projects. " Software congtruction is
an engineering discipline,” they say, "that breaks down if individua team members make decisonsfor themsdves.”

We disagree.

The congtruction of software should be an engineering discipline. However, this doesn't preclude individua
craftsmanship. Think about the large cathedras built in Europe during the Middle Ages. Each took thousands of
person-years of effort, spread over many decades. Lessons learned were passed down to the next set of builders,
who advanced the gate of structural engineering with their accomplishments. But the carpenters, stonecutters,
carvers, and glassworkerswere al craftspeople, interpreting the engineering requirements to produce awhol e that
transcended the purdly mechanical side of the construction. It wastheir belief in their individua contributions that
sustained the projects:

We who cut mere stones must always be envisioning cathedrals.
—Quarry worker'screed

Within the overd| structure of aproject thereisawaysroom for individuality and craftsmanship. Thisis particularly
true given the current state of software engineering. One hundred years from now, our engineering may seem as
archaic asthe techniques used by medieva cathedra builders seem to today's civil engineers, while our craftsmanship
will il be honored.

| | @ve RuBoard

| | @ve RuBoard

It'sa Continuous Process

Atourist visiting England's Eton College asked the gardener how he got the lawns so perfect. "That's easy,’
he replied, "You just brush off the dew every morning, mow them every other day, and roll them once a
week."

"Isthat all?" asked the tourist.

"Absolutely," replied the gardener. "Do that for 500 years and you'll have a nice lawn, too."

Great lawns need smdl amounts of daily care, and so do great programmers. Management consultants like to drop
the word kaizen in conversations. "Kaizen" is a Japanese term that captures the concept of continuoudy making
many small improvements. It was considered to be one of the main reasons for the dramatic gainsin productivity and
qudity in Japanese manufacturing and was widdly copied throughout the world. Kaizen gppliesto individuas, too.
Every day, work to refine the skills you have and to add new tools to your repertoire. Unlike the Eton lawns, you'll
start seeing resultsin amatter of days. Over the years, you'll be amazed at how your experience has blossomed and
your skills have grown.

| | @ve RuBoard

| | @ve RuBoard

How the Book |s Organized

Thisbook iswritten as a collection of short sections. Each section is self-contained, and addresses a particular topic.
Y ou'll find numerous cross references, which help put each topic in context. Fedl freeto read the sectionsin any
order—thisisn't abook you need to read front-to-back.

Occasiondly you'll come acrossabox labeled Tip nn (such as Tip 1, "Care About Y our Craft" on page xix). Aswell
asemphagzing pointsin the text, we fed thetips have alife of their own—welive by them daily. Youll find a
summary of al thetipson apull-out card insde the back cover.

Appendix A contains aset of resources: the book's bibliography, alist of URLsto Web resources, and alist of
recommended periodicas, books, and professional organizations. Throughout the book you'll find referencesto the
bibliography and to thelist of URLs—such as[KP99] and [URL 18], respectively.

Weveincluded exercises and challenges where gppropriate. Exercises normally have reatively straightforward
answers, while the chalenges are more open-ended. To give you an ideaof our thinking, weve included our answvers
to the exercisesin Appendix B, but very few have asingle correct solution. The challenges might form the basis of
group discussions or essay work in advanced programming Courses.

| | @ve RuBoard

| | @ve RuBoard

What'sin a Name?

"When | use a word," Humpty Dumpty said, in rather a scornful tone, "it means just what | choose it to
mean—~neither more nor less.”

LewisCarroll, Through the Looking-Glass

Scattered throughout the book you'll find various bits of jargon—either perfectly good English words that have been
corrupted to mean something technical, or horrendous made-up words that have been assigned meanings by
computer scientists with agrudge againgt the language. Thefirst time we use each of these jargon words, wetry to
defineit, or at least give ahint to its meaning. However, were sure that some have falen through the cracks, and
others, such as object and relational database, arein common enough usage that adding a definition would be
boring. If you do come across aterm you haven't seen before, please don't just skip over it. Taketimeto look it up,
perhaps on the Web, or maybe in a computer science textbook. And, if you get a chance, drop us an e-mail and
complain, so we can add a definition to the next edition.

Having said dl this, we decided to get revenge against the computer scientists. Sometimes, there are perfectly good
jargon wordsfor concepts, words that we've decided to ignore. Why? Because the existing jargon isnormaly
restricted to aparticular problem domain, or to aparticular phase of development. However, one of the basic
philosophies of thisbook isthat most of the techniques we're recommending are universal: modularity appliesto
code, designs, documentation, and team organization, for ingance. When we wanted to use the conventiona jargon
word in abroader context, it got confusng—we couldn't seem to overcome the baggage the origina term brought
with it. When this happened, we contributed to the decline of the language by inventing our own terms.

Sour ce Code and Other Resour ces

Most of the code shown in thisbook is extracted from compilable source files, available for download from our Web
gte

http://www.pragméti cprogrammer.com

Thereyou'll dso find links to resources we find useful, dong with updates to the book and news of other Pragmatic
Programmer devel opments.

Send Us Feedback

Wed appreciate hearing from you. Comments, suggestions, errorsin the text, and problemsin the examples are dll
welcome. E-mail usat

ppbook @pragmeti cprogrammer.com

http://www.pragmaticprogrammer.com/default.htm
mailto:ppbook@pragmaticprogrammer.com
http://www.pragmaticprogrammer.com

Acknowledgments

When we started writing this book, we had no ideahow much of ateam effort it would end up being.

Addison-Wedey has been brilliant, taking a couple of wet-behind-the-ears hackers and walking us through the whole
book-production process, from ideato camera-ready copy. Many thanks to John Wait and Meera Ravindiran for
their initia support, Mike Hendrickson, our enthusiastic editor (and amean cover designer!), Lorraine Ferrier and
John Fuller for their help with production, and the indefatigable Julie DeBaggis for keeping us dl together.

Then there were the reviewers. Greg Andress, Mark Cheers, Chris Cledand, Alistair Cockburn, Ward Cunningham,
Martin Fowler, Thanh T. Giang, Robert L. Glass, Scott Henninger, Michagl Hunter, Brian Kirby, John Lakos, Pete
McBreen, Carey P. Morris, Jared Richardson, Kevin Ruland, Eric Starr, Eric Vought, Chris Van Wyk, and Deborra
Zukowski. Without their careful comments and va uable ingghts, this book would be less readable, less accurate, and
twice aslong. Thank you dl for your time and wisdom.

The second printing of this book benefited greetly from the eagle eyes of our readers. Many thanksto Brian Blank,
Paul Bod, Tom Ekberg, Brent Fulgham, Louis Paul Hebert, Henk-Jan Olde Loohuis, Alan Lund, Gareth
McCaughan, Y oshiki Shibata, and Volker Wurgt, both for finding the mistakes and for having the grace to point them

out gently.

Over the years, we have worked with alarge number of progressive clients, where we gained and refined the
experience we write about here. Recently, we've been fortunate to work with Peter Gehrke on severd large projects.
His support and enthusiasm for our techniques are much appreciated.

This book was produced using LATEX, pic, Perl, dvips, ghostview, ispell, GNU make, CV'S, Emacs, XEmacs,
EGCS, GCC, Java, iContract, and SmdlEiffd, usng the Bash and zsh shdllsunder Linux. The staggering thing isthat
al of thistremendous softwareisfredy available. We owe a huge "thank you" to the thousands of Pragmatic
Programmers worldwide who have contributed these and other worksto usall. Wed particularly like to thank Reto
Kramer for his help with iContract.

Lagt, but in no way least, we owe a huge debt to our families. Not only have they put up with late night typing, huge
telephone bills, and our permanent air of distraction, but they've had the grace to read what we've written, time after
time. Thank you for letting us dream.

Andy Hunt

Dave Thomas

| | @ve RuBoard

| | @ve RuBoard

Chapter 1. A Pragmatic Philosophy

What distinguishes Pragmeatic Programmers? Wefed it'san atitude, a style, a philosophy of approaching problems
and their solutions. They think beyond the immediate problem, awaystrying to placeit initslarger context, dways

trying to be aware of the bigger picture. After al, without thislarger context, how can you be pragmatic? How can

you make intelligent compromises and informed decisons?

Another key to their successisthat they take responshility for everything they do, which we discussin The Cat Ate
My Source Code. Being responsible, Pragmatic Programmerswon't sit idly by and watch their projectsfall gpart
through neglect. In Software Entropy, wetell you how to keep your projects pristine.

Most people find change difficult to accept, sometimes for good reasons, sometimes because of plain old inertia. In
Sone Soup and Boiled Frogs, welook at a strategy for instigating change and (in the interests of balance) present
the cautionary tale of an amphibian that ignored the dangers of gradual change.

One of the benefits of understanding the context in which you work isthat it becomes easier to know just how good
your software has to be. Sometimes near-perfection isthe only option, but often there are trade-offs involved. We
explorethisin Good-Enough Software.

Of course, you need to have a broad base of knowledge and experienceto pull al of thisoff. Learningisa
continuous and ongoing process. In Your Knowledge Portfolio, we discuss some strategies for keeping the
momentum up.

Finaly, none of usworksin avacuum. We dl spend alarge amount of time interacting with others. Communicate!
listsways we can do this better.

Pragmatic programming stems from a philosophy of pragmatic thinking. This chapter setsthe basisfor that philosophy.

| | @ve RuBoard

| | @ve RuBoard HE

The Cat Ate My Source Code

The greatest of all weaknesses is the fear of appearing weak.

J. B. Bossuet, Politicsfrom Holy Writ, 1709

One of the cornerstones of the pragmatic philosophy isthe idea of taking respongbility for yourself and your actions
interms of your career advancement, your project, and your day-to-day work. A Pragmatic Programmer takes
charge of hisor her own career, and isn't afraid to admit ignorance or error. It's not the most pleasant aspect of
programming, to be sure, but it will happen—even on the best of projects. Despite thorough testing, good
documentation, and solid automation, things go wrong. Deliveries are late. Unforeseen technical problems come up.

These things happen, and we try to ded with them as professiondly aswe can. This means being honest and direct.
We can be proud of our ahilities, but we must be honest about our shortcomings—our ignorance aswell as our
mistakes.

Take Responsibility

Responsihility is something you actively agreeto. Y ou make acommitment to ensure that something is done right, but
you don't necessarily have direct control over every aspect of it. In addition to doing your own persona best, you
must andyze the Stuation for risks that are beyond your control. Y ou have the right not to take on aresponsibility for
an impossible Stuation, or onein which the risks are too greet. Y ou'll have to make the call based on your own ethics
and judgment.

When you do accept the responsibility for an outcome, you should expect to be held accountable for it. When you
make amistake (aswe dl do) or an error in judgment, admit it honestly and try to offer options.

Don't blame someone or something else, or make up an excuse. Don't blame al the problems on avendor, a
programming language, management, or your coworkers. Any and al of these may play arole, but it isup to you to
provide solutions, not excuses.

If therewas arisk that the vendor wouldn't come through for you, then you should have had a contingency plan. If
the disk crashes—taking all of your source code with it—and you don't have abackup, it'syour fault. Telling your
boss "the cat ate my source code’ just won't cut it.

Tip3

Provide Options, Don't Make Lame Excuses

Before you gpproach anyoneto tell them why something can't be done, islate, or is broken, stop and listen to
yoursdlf. Talk to the rubber duck on your monitor, or the cat. Does your excuse sound reasonable, or stupid? How's
it going to sound to your boss?

Run through the conversation in your mind. What isthe other person likely to say? Will they ask, "Haveyou tried
this..." or "Didn't you consder that?' How will you respond? Before you go and tell them the bad news, isthere
anything else you can try? Sometimes, you just know what they are going to say, so save them thetrouble.

Instead of excuses, provide options. Don't say it can't be done; explain what can be done to salvage the Situation.
Does code have to be thrown out? Educate them on the value of refactoring (see Refactoring). Do you need to
spend time prototyping to determine the best way to proceed (see Prototypes and Post-it Notes)? Do you need to
introduce better testing (see Code That's Easy to Test and Ruthless Testing) or automation (see Ubiquitous
Automation) to prevent it from happening again? Perhaps you need additiona resources. Don't be afraid to ask, or to
admit that you need help.

Try to flush out the lame excuses before voicing them aoud. If you mugt, tell your cat firgt. After dl, if little Tiddlesis
going to takethe blame.....

Related sectionsinclude:

Prototypes and Post-it Notes

Refactoring

Code That's Easy to Test

Ubiguitous Automation

Ruthless Tedting

Challenges

How do you react when someone—such as a bank teller, an auto mechanic, or a clertk—comesto you with
alame excuse? What do you think of them and their company asaresult?

| | @ve RuBoard

| | @ve RuBoard

Softwar e Entropy

While software development isimmune from dmost al physica laws, entropy hitsus hard. Entropy isaterm from
physicsthat refersto the amount of "disorder” in asystem. Unfortunatdly, the laws of thermodynamics guarantee that
the entropy in the universe tends toward a maximum. When disorder increasesin software, programmerscdl it
"oftwarerot.”

There are many factors that can contribute to software rot. The most important one seemsto be the psychology, or
culture, at work on a project. Even if you are ateam of one, your project's psychology can be avery ddicate thing.
Despite the best laid plans and the best people, aproject can still experience ruin and decay during itslifetime. Yet
there are other projects that, despite enormous difficulties and constant setbacks, successfully fight nature's tendency
toward disorder and manage to come out pretty well.

What makes the difference?

Ininner cities, some buildings are beautiful and clean, while others are rotting hulks. Why? Researchersin thefield of
crime and urban decay discovered afascinating trigger mechanism, onethat very quickly turnsaclean, intact,
inhabited building into a smashed and abandoned derdlict [WK 82].

A broken window.

One broken window, left unrepaired for any subgtantia length of time, ingtillsin the inhabitants of the building asense
of abandonment—a sense that the powers that be don't care about the building. So another window gets broken.
People start littering. Graffiti appears. Serious structural damage begins. In ardatively short space of time, the
building becomes damaged beyond the owner's desire to fix it, and the sense of abandonment becomes redlity.

The "Broken Window Theory" hasinspired police departmentsin New Y ork and other mgor citiesto crack down
on the small stuff in order to keep out the big stuff. 1t works: keeping on top of broken windows, graffiti, and other
small infractions has reduced the serious crime levdl.

Tip4

Don't Live with Broken Windows

Don't leave "broken windows' (bad designs, wrong decisions, or poor code) unrepaired. Fix each one as soon asit
isdiscovered. If thereisinsufficient timeto fix it properly, then board it up. Perhaps you can comment out the

offending code, or display a"Not Implemented” message, or substitute dummy datainstead. Take some action to
prevent further damage and to show that you're on top of the Situation.

Weve seen clean, functiona systems deteriorate pretty quickly once windows start breaking. There are other factors
that can contribute to software rot, and welll touch on some of them el sewhere, but neglect accelerates the rot faster
than any other factor.

Y ou may be thinking that no one has the time to go around cleaning up al the broken glass of aproject. If you
continue to think like that, then you'd better plan on getting a dumpster, or moving to another neighborhood. Don't let
entropy win.

Putting Out Fires

By contrast, there's the story of an obscendly rich acquaintance of Andy's. His house was immaculate, beautiful,
loaded with priceless antiques, objets d'art, and so on. One day, atapestry that was hanging alittle too closeto his
living room fireplace caught on fire. The fire department rushed in to save the day—and his house. But before they
dragged their big, dirty hoses into the house, they stopped—uwith the fire raging—to roll out amat between the front
door and the source of thefire.

They didn't want to mess up the carpet.

A pretty extreme case, to be sure, but that's the way it must be with software. One broken window—a badly
designed piece of code, a poor management decision that the team must live with for the duration of the project— is
all it takesto start the decline. If you find yoursdlf working on a project with quite afew broken windows, it'sdl too
easy to dip into the mindset of "All the rest of thiscodeiscrap, I'll just follow suit.” 1t doesn't matter if the project has
been fine up to this point. In the origina experiment leading to the "Broken Window Theory," an abandoned car sat
for aweek untouched. But once asingle window was broken, the car was stripped and turned upside down within
hours.

By the sametoken, if you find yourself on ateam and a project where the codeis pristinely beautiful—cleanly
written, well designed, and eegant—you will likely take extraspecia care not to messit up, just like thefirefighters.
Evenif therésafireraging (deadline, release date, trade show demo, €tc.), you don't want to be the first oneto
make amess.

Related sectionsinclude:

Stone Soup and Boiled Frogs

Refactoring

Pragmétic Teams

Challenges

Help strengthen your team by surveying your computing "neighborhood.” Choose two or three "broken
windows" and discuss with your colleagues what the problems are and what could be done to fix them.

Can you tell when awindow first gets broken? What is your reaction? If it was the result of someone else's
decision, or amanagement edict, what can you do about it?

| | @ve RuBoard

| | @ve RuBoard

Stone Soup and Boiled Frogs

The three soldiers returning home from war were hungry. When they saw the village ahead their spirits
lifted—they were sure the villagers would give them a meal. But when they got there, they found the doors
locked and the windows closed. After many years of war, the villagers were short of food, and hoarded what
they had.

Undeterred, the soldiers boiled a pot of water and carefully placed three stones into it. The amazed villagers
came out to watch.

"Thisis stone soup,” the soldiers explained. "Isthat all you put in it?" asked the villagers.
" Absol utel y—although some say it tastes even better with a few carrots...." A villager ran off, returning in
no time with a basket of carrots from his hoard.

A couple of minutes later, the villagers again asked "Is that it?"
"Well," said the soldiers, "a couple of potatoes give it body." Off ran another villager.

Over the next hour, the soldiers listed more ingredients that would enhance the soup: beef, leeks, salt, and
herbs. Each time a different villager would run off to raid their personal stores.

Eventually they had produced a large pot of steaming soup. The soldiers removed the stones, and they sat
down with the entire village to enjoy the first square meal any of them had eaten in months.

There are acouple of moralsin the stone soup story. The villagers are tricked by the soldiers, who use the villagers
curiosity to get food from them. But more importantly, the soldiers act as a cataly<, bringing the village together so
they can jointly produce something that they couldn't have done by themsdaves—a synergistic result. Eventualy
everyonewins.

Every now and then, you might want to emulate the soldiers.

Y ou may bein asituation where you know exactly what needs doing and how to do it. The entire system just
appears before your eyes—you know it'sright. But ask permission to tackle the whole thing and you'll be met with
ddays and blank stares. People will form committees, budgets will need gpproval, and thingswill get complicated.
Everyonewill guard their own resources. Sometimesthisiscaled "start-up fatigue.”

It'stimeto bring out the stones. Work out what you can reasonably ask for. Develop it well. Once you've got it,
show people, and let them marvel. Then say "of course, it would be better if we added...." Pretend it's not
important. Sit back and wait for them to start asking you to add the functiondity you originaly wanted. Peoplefind it
eader to join an ongoing success. Show them aglimpse of the future and you'll get them to raly around.[1]

[1] While doing this, you may be comforted by the line attributed to Rear Admiral Dr. Grace Hopper: "It's easier to ask forgiveness than it isto get

permission."”

Tip5

Be aCatalyst for Change

The Villagers Side

On the other hand, the stone soup story is aso about gentle and gradual deception. It's about focusing too tightly.
The villagers think about the stones and forget about the rest of the world. We dl fal for it, every day. Thingsjust
Creep up on us.

Weve al seen the symptoms. Projects dowly and inexorably get totally out of hand. Most software disasters start
out too smdll to notice, and mogt project overruns happen aday a atime. Systems drift from their specifications
feature by feature, while patch after patch gets added to a piece of code until there's nothing of the origind left. It's
often the accumulation of smal thingsthat breaks morae and teams.

Tip6

Remember the Big Picture

Weve never tried this—honest. But they say that if you take afrog and drop it into boiling water, it will jump straight
back out again. However, if you place the frog in apan of cold water, then gradudly hest it, the frog won't notice the
dow increase in temperature and will stay put until cooked.

Note that the frog's problem is different from the broken windows issue discussed in Section 2. In the Broken
Window Theory, people lose the will to fight entropy because they perceive that no one ese cares. Thefrog just
doesn't notice the change.

Don't be like the frog. Keegp an eye on the big picture. Congtantly review what's happening around you, not just what
you personally are doing.

Related sectionsinclude:

Software Entropy

Programming by Coincidence

Refactoring

The Requirements Pit

Pragmétic Teams

Challenges

While reviewing adraft of thisbook, John Lakosraised the following issue: The soldiers progressively
deceivethe villagers, but the change they catalyze doesthem dl good. However, by progressvely deceiving
thefrog, you're doing it harm. Can you determine whether you're making stone soup or frog soup when you
try to catalyze change? I s the decision subjective or objective?

| | @ve RuBoard

| | @ve RuBoard

Good-Enough Software

Striving to better, oft we mar what's well.
King Lear 1.4

Theré's an old(ish) joke about aU.S. company that places an order for 100,000 integrated circuits with a Japanese
manufacturer. Part of the specification was the defect rate: one chip in 10,000. A few weeks later the order arrived:
one large box containing thousands of |Cs, and asmall one containing just ten. Attached to the small box was alabel
that read: "These are the faulty ones.”

If only weredly had thiskind of control over quality. But the real world just won't let us produce much that's truly
perfect, particularly not bug-free software. Time, technology, and temperament all congpire againgt us.

However, thisdoesn't have to be frustrating. As Ed Y ourdon described in an articlein |EEE Software [Y ou95], you
can discipline yourself to write software that's good enough—good enough for your users, for future maintainers, for
your own peace of mind. Y oull find that you are more productive and your users are happier. And you may well find
that your programs are actualy better for their shorter incubation.

Before we go any further, we need to quaify what were about to say. The phrase "good enough™ does not imply
doppy or poorly produced code. All systems must meet their users requirements to be successful. We are smply
advocating that users be given an opportunity to participate in the process of deciding when what you've produced is
good enough.

Involve Your Usersin the Trade-Off

Normdly you're writing software for other people. Often you'll remember to get requirements from them.[2] But how
often do you ask them how good they want their software to be? Sometimes ther€lll be no choice. If you're working
on pacemakers, the space shuttle, or alow-leve library that will be widdly disseminated, the requirements will be
more stringent and your options more limited. However, if you're working on abrand new product, you'll have
different congtraints. The marketing people will have promisesto keep, the eventua end users may have made plans
based on addlivery schedule, and your company will certainly have cash-flow congtraints. It would be unprofessiona
to ignore these users requirements smply to add new features to the program, or to polish up the code just one more
time. We're not advocating panic: it isequally unprofessiona to promise impossible time scales and to cut basic
engineering cornersto meet adeadline.

[2] That was supposed to be a joke!

The scope and quality of the system you produce should be specified as part of that system's requirements.

Tip7

Make Qudity a Requirements Issue

Often you'l be in Stuations where trade-offs are involved. Surprisingly, many userswould rather use software with
some rough edges today than wait ayear for the multimediaverson. Many IT departments with tight budgets would
agree. Great software today is often preferable to perfect software tomorrow. If you give your users something to
play with early, their feedback will often lead you to a better eventua solution (see Tracer Bullets).

Know When to Stop

In some ways, programming is like painting. Y ou start with ablank canvas and certain basic raw materias. You usea
combination of science, art, and craft to determine what to do with them. Y ou sketch out an overall shape, paint the
underlying environment, then fill in the details. Y ou congtantly step back with acritica eyeto view what you've done.
Every now and then you'll throw acanvas away and sart again.

But artistswill tell you that al the hard work isruined if you don't know when to stop. If you add layer upon layer,
detall over detall, the painting becomes lost in the paint.

Don't spoil aperfectly good program by overembellishment and over-refinement. Move on, and let your code stand
initsown right for awhile. It may not be perfect. Don't worry: it could never be perfect. (In Chapter 6, well discuss
philosophiesfor developing code in an imperfect world.)

Related sectionsinclude:

Tracer Bullets

The Requirements Pit

Pragmatic Teams

Great Expectations

Challenges

L ook at the manufacturers of the software tools and operating systems that you use. Can you find any
evidence that these companies are comfortabl e shipping software they know is not perfect? Asa user, would
you rather (1) wait for them to get al the bugs out, (2) have complex software and accept some bugs, or (3)
opt for smpler software with fewer defects?

Congder the effect of modularization on the delivery of software. Will it take more or lesstimeto get a
monolithic block of software to the required quality compared with asystem designed in modules? Can you
find commercid examples?

| | @ve RuBoard

| | @ve RuBoard HE

Your Knowledge Portfolio

An investment in knowledge always pays the best interest.
Benjamin Franklin

Ah, good old Ben Franklin—never a alossfor apithy homily. Why, if we could just be early to bed and early to
rise, we'd be great programmers—right? The early bird might get the worm, but what happensto the early worm?

In this case, though, Ben redlly hit the nail on the head. Y our knowledge and experience are your most important
professional assets.

Unfortunately, they're expiring assets.[3] Y our knowledge becomes out of date as new techniques, languages, and
environments are devel oped. Changing market forces may render your experience obsolete or irrdevant. Given the
speed at which Web-yearsfly by, this can happen pretty quickly.

[3] An expiring asset is something whose value diminishes over time. Examples include a warehouse full of bananas and a ticket to a ball game.

Asthe vaue of your knowledge declines, so does your vaue to your company or client. We want to prevent this
from ever happening.

Your Knowledge Portfolio

Weliketo think of al the facts programmers know about computing, the gpplication domainsthey work in, and all
their experience astheir Knowledge Portfolios. Managing aknowledge portfolio isvery amilar to managing a
financid portfolio:

1.
Seriousinvestorsinvest regularly—as a habit.
Divergfication isthe key to long-term success.

Smart investors balance their portfolios between conservative and high-risk, high-reward investments.

Investorstry to buy low and sdll high for maximum return.

Portfolios should be reviewed and rebaanced periodicaly.

To be successful in your career, you must manage your knowledge portfolio using these same guiddines.

Building Your Portfolio

Invest regularly. Jus asinfinancia investing, you must invest in your knowledge portfolio regularly. Even
if it'sjust asmall amount, the habit itsdf isasimportant asthe sums. A few sample godsare listed in the next
section.

Diversify. Themore different thingsyou know, the more vauable you are. Asabasdline, you need to
know the ins and outs of the particular technology you are working with currently. But don't stop there. The
face of computing changes rapidly—hot technology today may well be closeto useless (or at least not in
demand) tomorrow. The more technologies you are comfortable with, the better you will be able to adjust to

change.

Managerisk. Technology exists dong aspectrum from risky, potentially high-reward to low-risk,
low-reward standards. It's not agood ideato invest dl of your money in high-risk stocks that might collapse
suddenly, nor should you invest dl of it conservatively and miss out on possible opportunities. Don't put all
your technical eggsin one basket.

Buy low, sdl high. Learning an emerging technology before it becomes popular can be just ashard as
finding an underva ued stock, but the payoff can be just as rewarding. Learning Javawhen it first came out
may have been risky, but it paid off handsomely for the early adopters who are now &t the top of that field.

Review and rebalance. Thisisavery dynamicindustry. That hot technology you started investigating last
month might be stone cold by now. Maybe you need to brush up on that database technology that you
haven't used in awhile. Or perhaps you could be better positioned for that new job opening if you tried out
that other language.. ..

Of dl these guiddines, the most important one isthe smplest to do:

Tip8

Invest Regularly in'Y our Knowledge Portfolio

Goals

Now that you have some guiddines on what and when to add to your knowledge portfolio, what's the best way to go
about acquiring intellectud capita with which to fund your portfolio? Here are afew suggestions.

Learn at least one new language every year. Different languages solve the same problemsin different
ways. By learning severd different gpproaches, you can help broaden your thinking and avoid getting stuck in
arut. Additiondly, learning many languagesisfar easier now, thanksto the wedlth of freely available software
on the Internet (see page 267).

Read atechnical book each quarter. Bookstoresare full of technica books on interesting topics related
to your current project. Once you're in the habit, read a book a month. After you've mastered the
technologies you're currently using, branch out and study somethat don't relate to your project.

Read nontechnical books, too. Itisimportant to remember that computers are used by people—people
whose needs you aretrying to satisfy. Don't forget the human side of the equation.

Take classes. Look for interesting courses at your local community college or university, or perhaps a the
next trade show that comesto town.

Participatein local user groups. Don' just go and listen, but actively participate. 1solation can be deadly
to your career; find out what people are working on outside of your company.

Experiment with different environments. If you'veworked only in Windows, play with Unix a home
(thefredly available Linux is perfect for this). If you've used only makefiles and an editor, try an IDE, and vice
versa

Stay current. Subscribe to trade magazines and other journals (see page 262 for recommendations).
Choose somethat cover technology different from that of your current project.

Get wired. Want to know the ins and outs of anew language or other technology? Newsgroups are agreat
way to find out what experiences other people are having with it, the particular jargon they use, and so on.
Surf the Web for papers, commercia sites, and any other sources of information you can find.

It'simportant to continue investing. Once you fed comfortable with some new language or bit of technology, move
on. Learn another one,

It doesn't matter whether you ever use any of these technologies on a project, or even whether you put them on your
resume. The process of learning will expand your thinking, opening you to new possibilities and new ways of doing
things. The cross-pollination of ideasisimportant; try to apply the lessons you've learned to your current project.
Evenif your project doesn't use that technology, perhaps you can borrow someideas. Get familiar with object
orientation, for ingtance, and you'll write plain C programs differently.

Opportunitiesfor Learning

So you're reading voracioudy, you're on top of al the latest breaking developmentsin your field (not an easy thing to
do), and somebody asks you aquestion. Y ou don't have the faintest ideawhat the answer is, and freely admit as
much.

Don't let it stop there. Takeit asapersona chalengeto find the answer. Ask aguru. (If you don't haveaguruin
your office, you should be able to find one on the Internet: see the box on on the facing page.) Search the Web. Go
tothelibrary.[4

[4] In this era of the Web, many people seem to have forgotten about real live libraries filled with research material and staff.

If you can't find the answer yoursdlf, find out who can. Don't let it rest. Taking to other peoplewill help build your
persona network, and you may surprise yourself by finding solutionsto other, unrelated problems dong the way.
And that old portfolio just keeps getting bigger ...

All of thisreading and researching takestime, and timeisdready in short supply. So you need to plan ahead. Always
have something to read in an otherwise dead moment. Time spent waiting for doctors and dentists can be a great
opportunity to catch up on your reading—but be sure to bring your own magazine with you, or you might find
yoursdf thumbing through a dog-eared 1973 article about Papua New Guinea.

Critical Thinking

Thelast important point isto think critically about what you read and hear. Y ou need to ensure that the knowledge
inyour portfolio is accurate and unswayed by elther vendor or media hype. Beware of the zedlotswho ingst that their
dogma providesthe only answer—it may or may not be applicable to you and your project.

Never underestimate the power of commercialism. Just because aWeb search enginelistsa hit first doesn't mean that
it'sthe best match; the content provider can pay to get top billing. Just because a bookstore features a book
prominently doesn't mean it's agood book, or even popular; they may have been paid to placeit there.

Tip9

Critically Analyze What Y ou Read and Hear

Unfortunately, there are very few smple answers anymore. But with your extensive portfolio, and by applying some
critical anadlysstothe

Care and Cultivation of Gurus

With the globa adoption of the Internet, gurus suddenly are as close as your Enter key. So, how do you
find one, and how do you get oneto talk with you?

Wefind there are some smpletricks.

Know exactly what you want to ask, and be as specific as you can be.

Frame your question carefully and politely. Remember that you're asking afavor; don't seemto
be demanding an answer.

Onceyou've framed your questioned, stop and look again for the answer. Pick out some
keywords and search the web. Look for appropriate FAQs (lists of frequently asked questions
with answers).

Decideif you want to ask publicly or privately. Usenet news-groups are wonderful meeting
places for experts on just about any topic, but some people are wary of these groups public
nature. Alternatively, you can dwayse-mail your guru directly. Either way, use ameaningful
subject line. ("Need Help!!!" doesn't cut it.)

Sit back and be patient. People are busy, and it may take daysto get a specific answer.

Findly, please be sure to thank anyone who responds you. And if you see people asking questions you
can answer, play your part and participate.

torrent of technica publications you will read, you can understand the complex answers.
Challenges

Start learning anew language thisweek. Always programmed in C++? Try Smalltalk [URL 13] or Squeak [
URL 14]. Doing Java? Try Eiffd [URL 10] or TOM [URL 15]. See page 267 for sources of other free
compilers and environments.

Start reading anew book (but finish thisonefirdt’) If you are doing very detailed implementation and coding,
read abook on design and architecture. If you are doing high-level design, read abook on coding techniques.

Get out and talk technology with people who aren't Involved in your current project, or who don't work for
the same company. Network in your company cafeteria, or maybe seek out fellow enthusiasts at alocal
user's group mesting.

| | @ve RuBoard

| | @ve RuBoard

Communicatel

| believe that it is better to be looked over than it is to be overlooked.

Mae West, Belle of the Nineties, 1934

Maybe we can learn alesson from Ms. West. It's not just what you've got, but also how you packageit. Having the
best idess, thefinest code, or the most pragmatic thinking is ultimately sterile unless you can communicate with other
people. A good ideais an orphan without effective communication.

Asdevelopers, we have to communicate on many levels. We spend hours in meetings, listening and talking. We work
with end users, trying to understand their needs. We write code, which communicates our intentionsto amachine and
documents our thinking for future generations of devel opers. We write proposals and memos requesting and justifying
resources, reporting our status, and suggesting new approaches. And we work daily within our teamsto advocate
our ideas, modify exigting practices, and suggest new ones. A large part of our day is spent communicating, so we
need to do it well.

Welve put together alist of ideas that we find useful.

Know What You Want to Say

Probably the mogt difficult part of the more formal styles of communication used in businessisworking out exactly
what it isyou want to say. Fiction writers plot out their booksin detail before they start, but people writing technical
documents are often happy to sit down at akeyboard, enter 1. Introduction,” and start typing whatever comesinto
their heads next.

Plan what you want to say. Write an outline. Then ask yoursdlf, "Doesthis get across whatever I'm trying to say?"
Refineit until it does.

This gpproach is not just gpplicable to writing documents. When you're faced with an important meeting or a phone
cal with amgor client, jot down the ideas you want to communicate, and plan a couple of Strategiesfor getting them
across.

Know Your Audience

Y ou're communicating only if you're conveying information. To do that, you need to understand the needs, interests,
and capabilities of your audience. Weve dl sat in meetings where a development geek glazes over the eyes of the
vice president of marketing with along monol ogue on the merits of some arcane technology. Thisisn't communicating:
it'sjust taking, and it's annoying. (5]

[5] The word annoy comes from the Old French enui, which also means "to bore.”

Form astrong menta picture of your audience. The acrostic wisdom, shown in Figure 1.1 on thefollowing page, may
help.

Figure 1.1. Thewisdom acr ostic—under standing an audience
What do you want them to learn?
What is their interest in what you've got to say?
How sophisticated are they?
How much detail do they want?
Whom do you want to own the information?
How can you motivate them to listen to you?

Say you want to suggest aWeb-based system to alow your end users to submit bug reports. Y ou can present this
system in many different ways, depending on your audience. End userswill gppreciate that they can submit bug
reports 24 hours aday without waiting on the phone. Y our marketing department will be able to use this fact to boost
sdles. Managersin the support department will have two reasons to be happy: fewer staff will be needed, and
problem reporting will be automated. Findly, developers may enjoy getting experience with Web-based client-server
technologies and anew database engine. By making the appropriate pitch to each group, you'l get them al excited
about your project.

Choose Your Moment

It'ssix o'clock on Friday afternoon, following aweek when the auditors have been in. Y our bosss youngest isin the
hospitd, it's pouring rain outside, and the commute home is guaranteed to be a nightmare. This probably isn't agood
time to ask her for amemory upgrade for your PC.

As part of understanding what your audience needs to hear, you need to work out what their prioritiesare. Catch a
manager who's just been given ahard time by her boss because some source code got lost, and you'll have amore

receptive listener to your ideas on source code repositories. Make what you're saying relevant in time, aswell asin

content. Sometimes dl it takesisthe smple question "Isthisagood timeto talk about...?"

Choose a Style
Adjust the style of your delivery to suit your audience. Some people want aforma "just thefacts' briefing. Others

like along, wide-ranging chat before getting down to business. When it comes to written documents, some liketo
receive large bound reports, while others expect asimple memo or e-mail. If in doubt, ask.

Remember, however, that you are half of the communication transaction. If someone says they need a paragraph
describing something and you can't see any way of doing it in lessthan severd pages, tell them so. Remember, that
kind of feedback isaform of communication, too.

Make It L ook Good

Y our ideas are important. They deserve a good-looking vehicle to convey them to your audience.

Too many devel opers (and their managers) concentrate solely on content when producing written documents. We
think thisisamistake. Any chef will tell you that you can dave in the kitchen for hours only to ruin your effortswith
poor presentation.

Thereis no excuse today for producing poor-looking printed documents. Modern word processors (along with
layout systems such as LaTeX and troff) can produce stunning output. Y ou need to learn just afew basic commands.
If your word processor supports style sheets, use them. (Y our company may aready have defined style sheetsthat
you can use.) Learn how to set page headers and footers. Look at the sample documentsincluded with your
package to get ideas on style and layout. Check the spelling, first automatically and then by hand. After awl, ther
are spelling miss steeks that the chequer can knot ketch.

Involve Your Audience

We often find that the documents we produce end up being lessimportant than the process we go through to
produce them. If possible, involve your readers with early drafts of your document. Get their feedback, and pick their
brains. Y ou'll build agood working relationship, and you'll probably produce a better document in the process.
Bealistener

There's one technique that you must useif you want peopleto listen to you: listen to them. Evenif thisisastuation

where you have dl theinformation, even if thisisaforma meeting with you standing in front of 20 suits—if you don't
listen to them, they won't listen to you.

Encourage peopleto talk by asking questions, or have them summarize what you tell them. Turn the mesting into a
diadog, and you'll make your point more effectively. Who knows, you might even learn something.

Get Back to People

If you ask someone aquestion, you fed they'reimpoliteif they don't respond. But how often do you fail to get back
to people when they send you an e-mail or amemo asking for information or requesting some action? In the rush of
everyday life, it'seasy to forget. Always respond to e-mails and voice malls, even if the responseissmply "I'll get

back to you later." Keeping people informed makes them far more forgiving of the occasiond dip, and makesthem
fed that you havent forgotten them.

Tip 10

It's Both What Y ou Say and the Way Y ou Say It

Unlessyou work in avacuum, you need to be able to communicate. The more effective that communication, the
moreinfluentid you become.

E-Mail Communication

Everything welve said about communicating in writing gpplies equaly to dectronic mail. E-mail has
evolved to the point whereit ismain-gtay of intra- and intercorporate communications. E-mail isused to
discuss contracts, to settle disputes, and as evidence in court. But for some reason, people who would
never send out a shabby paper document are happy to fling nasty-looking e-mail around the world.

Our emall tipsaresmple:

Proofread before you hit |.SEND.-.

Check the spdling.

Keep the format smple. Some people read e-mail using proportiona fonts, so the ASCII art
pictures you laborioudy created will look to them like hen-scratchings.

Userich-text or HTML formatted mail only if you know that all your recipients can read it. Plain
textisuniversal.

Try to keep quoting to aminimum. No one likesto recieve back their own 100-line e-mail with
"| agree" tacked on.

If you're quoting other peopl€'s e-mail, be sure to attribute it, and quote it inline (rather than as
an attachment).

Don't flame unless you want it to come back and haunt you later.

Check your ligt of recipients before sending. A recent Wall Street Journal article described an
employee who took to distributing criticisms of hisboss over departmenta e-mail. without
redizing that hisbosswasincluded on the distribution list.

Archive and organize your e-mail-both the import stuff you receive and the mail you send.

| | @ve RuBoard

Summary

Know what you want to say.

Know your audience.

Choose your moment.

Chooseastyle.

Makeit look good.

Involve your audience.

Bealigener.

Get back to people.

Related sectionsinclude:

Prototypes and Post-it Notes

Pragmatic Teams

Challenges

There are savera good books that contain sections on communications within devel opment teams [Bro95,

McC95, DL99]. Makeit apoint to try to read all three over the next 18 months. In addition, the book
Dinosaur Brains [Ber96] discusses the emotiond baggage we dl bring to the work environment.

The next time you have to give a presentation, or write amemo advocating some position, try working
through the wisdom acrostic before you start. Seeif it helps you understand how to position what you say. If
appropriate, talk to your audience afterward and see how accurate your assessment of their needswas.

| | @ve RuBoard

| | @ve RuBoard

Chapter 2. A Pragmatic Approach

There are certain tips and tricks that apply at al levels of software development, ideasthat are dmost axiomatic, and
processes that are virtualy universa. However, these approaches are rarely documented as such; you'll mostly find
them written down as odd sentencesin discussions of design, project management, or coding.

In this chapter well bring these ideas and processes together. The first two sections, The Evils of Duplication and
Orthogonality, are closdy related. Thefirst warns you not to duplicate knowledge throughout your systems, the
second not to split any one piece of knowledge across multiple system components.

Asthe pace of change increases, it becomes harder and harder to keep our applications relevant. In Reversibility,
well ook at some techniquesthat help insulate your projects from their changing environment.

The next two sections are dso related. In Tracer Bullets, we talk about a style of development that allowsyou to
gather requirements, test designs, and implement code at the sametime. If this sounds too good to betrug, it is. tracer
bullet devel opments are not always applicable. When they're not, Prototypes and Post-it Notes shows you how to
use prototyping to test architectures, dgorithms, interfaces, and idess.

As computer science dowly matures, desgners are producing increasingly higher-level languages. While the compiler
that accepts "makeit so" hasn't yet been invented, in Domain Languages we present some more modest suggestions
that you can implement for yourself.

Findly, weal work inaworld of limited time and resources. Y ou can survive both of these scarcities better (and
keep your bosses happier) if you get good at working out how long things will take, which we cover in Estimating.

By keeping these fundamental principlesin mind during development, you can write code that's better, faster, and
stronger. Y ou can even make it look easy.

| | @ve RuBoard

| | @ve RuBoard

The Evils of Duplication

Giving acomputer two contradictory pieces of knowledge was Captain James T. Kirk's preferred way of disabling a
marauding artificid inteligence. Unfortunatdly, the same principle can be effectivein bringing down your code.

As programmers, we collect, organize, maintain, and harness knowledge. We document knowledge in specifications,
we make it come divein running code, and we use it to provide the checks needed during testing.

Unfortunately, knowledge isn't gable. It changes—often rapidly. Y our understanding of arequirement may change
following amesting with the client. The government changes aregulation and some business|ogic gets outdated.
Tests may show that the chosen dgorithm won't work. All thisinstability meansthat we spend alarge part of our time
In maintenance mode, reorganizing and reexpressing the knowledge in our systems.

Most people assume that mai ntenance begins when an application is released, that maintenance meansfixing bugs
and enhancing features. We think these people are wrong. Programmers are constantly in maintenance mode. Our
understanding changes day by day. New requirements arrive as were designing or coding. Perhaps the environment
changes. Whatever the reason, maintenanceis not a discrete activity, but aroutine part of the entire development
process.

When we perform maintenance, we have to find and change the representations of things—those capsules of
knowledge embedded in the gpplication. The problem isthat it's easy to duplicate knowledge in the specifications,
processes, and programs that we develop, and when we do so, we invite amaintenance nightmare—one that starts
well before the gpplication ships.

Wefed that the only way to develop software reliably, and to make our developments easier to understand and
maintain, isto follow what we cal the DRY principle

Every piece of knowledge must have a single, unambiguous, authoritative representation within asystem.

Why dowecdl it DRY?

Tip 11

DRY—Don't Repeat Yoursdf

The dternative isto have the same thing expressed in two or more places. If you change one, you have to remember

to change the others, or, like the alien computers, your program will be brought to its knees by a contradiction. It isn't
aquestion of whether you'll remember: it's a question of when you'll forget.

Y oull find the DRY principle popping up time and time again throughout this book, often in contexts that have nothing
to do with coding. We fed that it isone of the most important tools in the Pragmatic Programmer's tool box.

In this section wéll outline the problems of duplication and suggest generd drategies for deding withit.

How Does Duplication Arise?

Mogt of the duplication we seefalsinto one of thefollowing categories:

Imposed duplication. Developersfed they have no choice—the environment seemsto require duplication.

Inadvertent duplication. Developersdon' redize that they are duplicating information.

Impatient duplication. Developers get lazy and duplicate because it scems easier.

Interdeveloper duplication. Multiple people on ateam (or on different teams) duplicate a piece of
informetion.

Let'slook at these four i'sof duplication in more detall.

| mposed Duplication

Sometimes, duplication seemsto be forced on us. Project standards may require documents that contain duplicated
information, or documents that duplicate information in the code. Multiple target platforms each require their own
programming languages, libraries, and devel opment environments, which makes us duplicate shared definitions and
procedures. Programming languages themsalves require certain Sructures that duplicate information. We have dl
worked in Stuations where we felt powerlessto avoid duplication. And yet often there are ways of keeping each
piece of knowledge in one place, honoring the DRY principle, and making our lives easier at the sametime. Here are
sometechniques:

Multiplerepresentations of information. At the coding level, we often need to have the same information
represented in different forms. Maybe were writing a client-server application, using different languages on the client
and server, and need to represent some shared structure on both. Perhaps we need a class whose attributes mirror
the schema of a database table. Maybe you're writing abook and want to include excerpts of programs that you also
will compile and test.

With abit of ingenuity you can normaly remove the need for duplication. Often the answer isto writeasmplefilter
or code generator. Structuresin multiple languages can be built from a common metadata representation using a
smple code generator each time the software is built (an example of thisisshown in Figure 3.4). Class definitions can

be generated automatically from the online database schema, or from the metadata used to build the schemain the
first place. The code extracts in this book are inserted by a preprocessor each time we format the text. Thetrick isto
make the process active: this cannot be a one-time conversion, or we're back in aposition of duplicating data.

Documentation in code. Programmers are taught to comment their code: good code has ots of comments.
Unfortunately, they are never taught why code needs comments: bad code requires lots of comments.

The DRY principle tells usto keep the low-level knowledge in the code, where it belongs, and reserve the comments
for other, high-level explanations. Otherwise, were duplicating knowledge, and every change means changing both
the code and the comments. The comments will inevitably become out of date, and untrustworthy comments are
worse than no comments at al. (See It's All Writing, for more information on comments.)

Documentation and code. Y ou write documentation, then you write code. Something changes, and you amend
the documentation and update the code. The documentation and code both contain representations of the same
knowledge. And we dl know that in the hest of the moment, with deadlines|ooming and important clients clamoring,
we tend to defer the updating of documentation.

Dave once worked on an internationa telex switch. Quite understandably, the client demanded an exhaustive test
specification and required that the software pass dl tests on each ddlivery. To ensure that the tests accurately
reflected the specification, the team generated them programmatically from the document itself. When the client
amended their specification, the test suite changed automatically. Once the team convinced the client that the
procedure was sound, generating acceptance tests typically took only afew seconds.

Languageissues. Many languagesimpose consderable duplication in the source. Often this comes about when
the language separates a modul€'s interface from itsimplementation. C and C++ have header filesthat duplicate the
names and type information of exported variables, functions, and (for C++) classes. Object Pasca even duplicates
thisinformation in the samefile. If you are usng remote procedure cals or CORBA [URL 29], you'll duplicate
interface information between the interface specification and the code that implementsiit.

Thereisno easy technique for overcoming the requirements of alanguage. While some development environments
hide the need for header files by generating them automatically, and Object Pasca alows you to abbreviate repeated
function declarations, you are generdly stuck with what you're given. At least with most language-based issues, a
header file that disagrees with the implementation will generate some form of compilation or linkage error. Y ou can
dtill get thingswrong, but at least you'll be told about it fairly early on.

Think aso aout commentsin header and implementation files. Thereis absolutely no point in duplicating afunction
or class header comment between the two files. Use the header filesto document interface issues, and the
implementation files to document the nitty-gritty detailsthat users of your code don't need to know.

| nadvertent Duplication

Sometimes, duplication comes about as the result of mistakesin the design.

Let'slook a an example from the distribution industry. Say our analysis reveasthat, among other attributes, atruck
has atype, alicense number, and adriver. Smilarly, adelivery route isacombination of aroute, atruck, and a

driver. We code up some classes based on this understanding.

But what happenswhen Sdly cdlsin sck and we have to change drivers? Both Truck and DdliveryRoute contain a
driver. Which one do we change? Clearly this duplication is bad. Normdize it according to the underlying business
model—does atruck redly have adriver as part of its underlying attribute set? Does aroute? Or maybe there needs
to be athird object that knitstogether adriver, atruck, and aroute. Whatever the eventua solution, avoid thiskind
of unnormaized data

Thereisadightly lessobvious kind of unnormalized datathat occurs when we have multiple dataeementsthat are
mutudly dependent. Let'slook at aclassrepresenting aline:

class Line {
publi c:

Point start;
Poi nt end;
doubl e I ength;

};

At firgt Sght, this class might appear reasonable. A line clearly hasagtart and end, and will aways have alength
(evenif it'szero). But we have duplication. The length is defined by the start and end points: change one of the points
and the length changes. It's better to make the length acalculated field:

class Line {
publi c:
Point start;
Poi nt end;
doubl e Iength() { return start.distanceTo(end); }

b

Later on in the development process, you may chooseto violate the DRY principle for performance reasons.
Frequently this occurs when you need to cache data to avoid repeeting expensive operations. Thetrick isto localize
the impact. Theviolation is not exposed to the outside world: only the methods within the class have to worry about
keeping things sraight.

class Line {
private:
bool changed;
doubl e I engt h;
Point start;
Poi nt end;

publi c:
void setStart(Point p) { start = p; changed = true; }
voi d set End(Poi nt p) { end = p; changed = true; }

Poi nt getStart(void) { return start; }
Poi nt get End(voi d) { return end; }

doubl e getlLength() {
if (changed) {
length = start.distanceTo(end);
changed = fal se;

}

return | ength;

}
b

Thisexample dso illustrates an important issue for object-oriented languages such as Javaand C++. Where possible,
always use accessor functions to read and write the attributes of objects.[1] It will makeit easier to add functiondity,
such as caching, in the future.

[1] The use of accessor functions ties in with Meyer's Uniform Access principle [Mey97b], which states that "All services offered by a module should be
available through a uniform notation, which does not betray whether they are Implemented through storage or through computation."

| mpatient Duplication

Every project hastime pressures—forces that can drive the best of usto take shortcuts. Need aroutine smilar to
oneyou'vewritten? Y ou'll be tempted to copy the origina and make afew changes. Need avalue to represent the
maximum number of points?If | change the header file, the whole project will get rebuilt. Maybe | should just usea
literal number here; and here; and here. Need a class like one in the Java runtime? The source is available, so why
not just copy it and make the changes you need (license provisions notwithstanding)?

If you fed thistemptation, remember the hackneyed gphorism "shortcuts make for long delays.™ Y ou may well save
some seconds now, but at the potentia loss of hourslater. Think about the issues surrounding the Y 2K fiasco. Many
were caused by the laziness of devel opers not parameterizing the size of date fields or implementing centralized
libraries of date services.

Impatient duplication is an easy form to detect and handle, but it takes discipline and awillingness to spend time up
front to save pain later.

I nter developer Duplication

On the other hand, perhaps the hardest type of duplication to detect and handle occurs between different developers
on aproject. Entire sets of functionaity may be inadvertently duplicated, and that duplication could go undetected for
years, leading to maintenance problems. We heard firsthand of aU.S. state whose governmental computer systems
were surveyed for Y 2K compliance. The audit turned up more than 10,000 programs, each containing itsown
verson of Socid Security number vaidation.

At ahigh level, ded with the problem by having aclear design, a strong technica project leader (see Pragmatic Teams
), and awell-understood division of responsibilitieswithin the design. However, a the module leve, the problem is
moreingidious. Commonly needed functionality or data that doesn't fall into an obvious area of responsibility can get
implemented many timesover.

Wefed that the best way to deal with thisisto encourage active and frequent communication between developers.
Set up forumsto discuss common problems. (On past projects, we have set up private Usenet newsgroupsto alow
developersto exchange ideas and ask questions. This provides a nonintrusive way of communicating—even across
multiple Stes—while retaining a permanent history of everything said.) Appoint ateam member asthe project
librarian, whosejob isto facilitate the exchange of knowledge. Have acentra placein the source tree where utility
routines and scripts can be deposited. And make a point of reading other peopl€e's source code and documentation,
ether informally or during code reviews. Y ou're not snooping—you're learning from them. And remember, the
access s reciproca—don't get twisted about other people poring (pawing?) through your code, either.

Tip 12

Make It Easy to Reuse

What you'retrying to do isfoster an environment whereit's easier to find and reuse existing stuff than to writeit
yoursdf. If it isn't easy, people won't do it. And if you fall to reuse, you risk duplicating knowledge.

Related sectionsinclude:

Orthogondity

Text Manipulaion

Code Generators

Refactoring

Pragmatic Teams

Ubiguitous Automation

It'sAll Writing

| | @ve RuBoard

| | @ve RuBoard

Orthogonality

Orthogondity isacritical concept if you want to produce systemsthat are easy to design, build, test, and extend.
However, the concept of orthogondity israrely taught directly. Often it isan implicit festure of various other methods
and techniques you learn. Thisisamistake. Once you learn to apply the principle of orthogondity directly, you'l
notice an immediate improvement in the quaity of systemsyou produce.

What |s Orthogonality?

"Orthogonality" is aterm borrowed from geometry. Two lines are orthogond if they meet at right angles, such asthe
axeson agraph. In vector terms, the two lines are independent. Move along one of thelines, and your position
projected onto the other doesn't change.

A move parallel
to X-axis

i,

-+ ﬁ

no change
on Y-axis

>

In computing, the term has come to signify akind of independence or decoupling. Two or more things are orthogonal
If changesin one do not affect any of the others. In awell-designed system, the database code will be orthogona to
the user interface: you can change the interface without affecting the database, and swap databases without changing
theinterface.

Before we look at the benefits of orthogona systems, let'sfirst look at a system that isn't orthogondl .

A Nonorthogonal System

Y ou're on ahelicopter tour of the Grand Canyon when the pilot, who made the obvious mistake of eating fish for
lunch, suddenly groans and faints. Fortunately, he left you hovering 100 feet above the ground. Y ou rationdize that
the collective pitch lever[2] controls overdl lift, so lowering it dightly will start agentle descent to the ground.
However, when you try it, you discover that life isn't that smple. The helicopter's nose drops, and you start to spiral
down to the left. Suddenly you discover that you're flying a system where every control input has secondary effects.
Lower the left-hand lever and you need to add compensating backward movement to the right-hand stick and push
the right pedal. But then each of these changes affects dl of the other controls again. Suddenly you're juggling an
unbelievably complex system, where every changeimpactsdl the other inputs. Y our workload is phenomena: your
hands and feet are congtantly moving, trying to bdance al theinteracting forces.

[2] Helicopters have four basic controls. The cyclic is the stick you hold in your right hand. Move it, and the helicopter moves in the corresponding
direction. Your left hand holds the collective pitch lever. Pull up on this and you increase the pitch on all the blades, generating lift. At the end of the
pitch lever is the throttle. Finally you have two foot pedals, which vary the amount of tail rotor thrust and so help turn the helicopter.

Hélicopter controls are decidedly not orthogond.

Benefits of Orthogonality

Asthe hdicopter exampleillustrates, nonorthogond systems are inherently more complex to change and control.
When components of any system are highly interdependent, thereisno such thing asaloca fix.

Tip 13

Eliminate Effects Between Unrelated Things

We want to design componentsthat are self-contained: independent, and with asingle, well-defined purpose (what
Y ourdon and Congtantine call cohesion ['Y C86]). When components are isolated from one another, you know that
you can change one without having to worry about the rest. Aslong asyou don't change that component's external
interfaces, you can be comfortable that you won't cause problems that ripple through the entire system.

Y ou get two mgjor benefitsif you write orthogond systems: increased productivity and reduced risk.
Gain Productivity

Changes arelocalized, so development time and testing time are reduced. It iseasier to write relatively small,
self-contained components than asingle large block of code. Simple components can be designed, coded,
unit tested, and then forgotten—there is no need to keep changing existing code as you add new code.

An orthogona gpproach also promotes reuse. If components have specific, well-defined responsihilities, they
can be combined with new componentsin ways that were not envisioned by their origind implementors. The
more loosdly coupled your systems, the easier they are to reconfigure and reenginesr.

Thereisafairly subtle gain in productivity when you combine orthogona components. Assume that one
component does M distinct things and another does N things. If they are orthogona and you combine them,
theresult does M x N things. However, if the two components are not orthogona, there will be overlap, and
the result will do less. Y ou get more functiondity per unit effort by combining orthogona components.

Reduce Risk

An orthogond approach reduces the risks inherent in any development.

Diseased sections of code areisolated. If amoduleissck, it islesslikely to soread the symptoms around the

rest of the system. It isalso easier to diceit out and transplant in something new and hedlthy.

Theresulting system islessfragile. Make smal changes and fixesto aparticular area, and any problemsyou
generate will be restricted to that area.

An orthogona system will probably be better tested, becauseit will be easier to design and run testsonits
components.

Y ou will not be astightly tied to aparticular vendor, product, or platform, because the interfaces to these
third-party components will beisolated to smdler parts of the overal development.

Let'slook at some of the ways you can apply the principle of orthogondity to your work.

Project Teams

Have you noticed how some project teams are efficient, with everyone knowing what to do and contributing fully,
while the members of other teams are constantly bickering and don't seem able to get out of each other'sway?

Often thisis an orthogondity issue. When teams are organized with lots of overlap, members are confused about
responsibilities. Every change needs ameeting of the entire team, because any one of them might be affected.

How do you organize teamsinto groups with well-defined respongbilities and minima overlap? Therésno smple
answer. It depends partly on the project and your analysis of the areas of potentid change. It also depends on the
people you have available. Our preference isto start by separating infrastructure from application. Each mgjor
infrastructure component (database, communicationsinterface, middieware layer, and so on) getsits own subteam.
Each obvious divison of gpplication functiondity issmilarly divided. Then we look at the people we have (or planto
have) and adjust the groupings accordingly.

Y ou can get an informa measure of the orthogonality of a project team's structure. Simply see how many people need
to beinvolved in discussing each change that is requested. Thelarger the number, the less orthogona the group.
Clearly, an orthogond team is more efficient. (Having said this, we a so encourage subteams to communicate
congtantly with each other.)

Design

Most developers are familiar with the need to design orthogona systems, athough they may use words such as
modular, component-based, and layered to describe the process. Systems should be composed of a set of
cooperating modules, each of which implements functiondity independent of the others. Sometimesthese
components are organized into layers, each providing aleve of absiraction. This layered approach isapowerful way
to design orthogonal systems. Because each layer uses only the abstractions provided by the layers below it, you
have greet flexibility in changing underlying implementations without affecting code. Layering aso reducestherisk of
runaway dependencies between modules. Y ou'll often see layering expressed in diagrams such as Figure 2.1 on the

next page.

Figure2.1. Typical layer diagram

User Interface

Database Report Business
access engine logic

Application framework

Standard C library

Operating system

Thereisan easy test for orthogona design. Once you have your components mapped out, ask yoursdlf: If |
dramatically change the requirements behind a particular function, how many modules are affected? Inan
orthogona system, the answer should be "one."[3] Moving abutton on aGUI pand should not require achangein the
database schema. Adding context-sensitive help should not change the billing subsystem.

[3] Inreadlity, thisis naive. Unless you are remarkably lucky, most real-world requirements changes will affect multiple functions in the system.
However, if you analyze the change in terms of functions, each functional change should still ideally affect just one module.

Let'sconsder acomplex system for monitoring and controlling a heating plant. The origina requirement caled for a
graphical user interface, but the requirements were changed to add a voi ce response system with touchtone telephone
control of the plant. In an orthogonally designed system, you would need to change only those modules associated
with the user interface to handle this: the underlying logic of controlling the plant would remain unchanged. In fact, if
you structure your system carefully, you should be able to support both interfaces with the same underlying code
base. It's Just aView, talks about writing decoupled code using the Modd -View-Controller (MVC) paradigm,
which workswdl in thisstuation.

Also ask yoursdlf how decoupled your design isfrom changesin the real world. Are you using atelephone number as
acustomer identifier? What happens when the phone company reassigns area codes? Don't rely on the properties
of things you can't control.

Toolkitsand Libraries

Be careful to preserve the orthogonality of your system as you introduce third-party toolkits and libraries. Choose
your technologieswisdly.

We once worked on a project that required that a certain body of Java code run both locally on a server machine
and remotedly on aclient machine. The dternatives for distributing classesthisway were RMI and CORBA. If aclass
were made remotely ble usng RMI, every cdl to aremote method in that class could potentialy throw an
exception, which means that anaive implementation would require us to handle the exception whenever our remote
classeswere used. Using RMI hereisclearly not orthogond: code calling our remote classes should not haveto be
aware of their locations. The aternative—usng CORBA—did not impose that restriction: we could write code that
was unaware of our classes locations.

When you bring in atoolkit (or even alibrary from other members of your team), ask yoursdlf whether it imposes
changes on your code that shouldn't be there. If an object persistence schemeis transparent, then it's orthogond. If it
requires you to create or access objectsin aspecia way, then it's not. Keeping such detailsisolated from your code
has the added benefit of making it easier to change vendorsin the future.

The Enterprise Java Beans (EJB) system is an interesting example of orthogondity. In most transaction-oriented
systems, the gpplication code has to ddlineate the start and end of each transaction. With EJB, thisinformation is
expressed declaratively as metadata, outside any code. The same gpplication code can run in different EJB
transaction environments with no change. Thisislikdy to beamode for many future environments.

Another interesting twist on orthogondity is Aspect-Oriented Programming (AOP), aresearch project at Xerox Parc
([KLM+97] and [URL 49]). AOP lets you express in one place behavior that would otherwise be distributed
throughout your source code. For example, log messages are normally generated by sprinkling explicit calsto some
log function throughout your source. With AOP, you implement logging orthogondly to the things being logged. Using
the Java version of AOP, you could write alog message when entering any method of class Fred by coding the

aspect:

aspect Trace {
advise * Fred.*(..) {
static before {
Log.wite("-> Entering " + thisJoinPoint. nmet hodNamne);

}
}
}

If you weave this aspect into your code, trace messages will be generated. If you don't, you'll see no messages.
Either way, your original sourceis unchanged.

Coding

Every time you write code you run the risk of reducing the orthogonality of your application. Unless you congtantly
monitor not just what you are doing but also the larger context of the gpplication, you might unintentionally duplicate
functiondlity in some other module, or express existing knowledge twice.

There are severd techniques you can use to maintain orthogonality:

Keep your code decoupled. Write shy code—modules that don't revea anything unnecessary to other
modules and that don't rely on other modules implementations. Try the Law of Demeter [LH89], which we
discussin Decoupling and the Law of Demeter. If you need to change an object's state, get the object to do
it for you. Thisway your code remainsisolated from the other code's implementation and increases the
chancesthat you'll remain orthogondl.

Avoid global data. Every timeyour code references globa data, it tiesitsalf into the other components that
sharethat data. Even globasthat you intend only to read can lead to trouble (for example, if you suddenly
need to change your code to be multithreaded). In generd, your code is easier to understand and maintain if

you explicitly pass any required context into your modules. In object-oriented gpplications, context is often
passed as parameters to objects constructors. In other code, you can create structures containing the
context and pass around references to them.

The Singleton pattern in Design Patterns [GHJV95] isaway of ensuring that thereis only oneinstance of an
object of aparticular class. Many people use these singleton objects as akind of globd variable (particularly
in languages, such as Java, that otherwise do not support the concept of globals). Be careful with
singletons—they can aso lead to unnecessary linkage.

Avoid smilar functions. Oftenyoull come acrossaset of functionsthat al look similar—maybe they
share common code at the start and end, but each has a different centrd algorithm. Duplicate codeisa
symptom of structura problems. Have alook at the Strategy pattern in Design Patterns for a better
implementation.

Get into the habit of being congtantly critical of your code. Look for any opportunitiesto reorganize it to improveits
sructure and orthogondlity. This processis cdled refactoring, and it's so important that we've dedicated a section to

it (see Refactoring).

Testing

An orthogondly designed and implemented system is easier to test. Because the interactions between the system'’s
components are formalized and limited, more of the system testing can be performed at the individua module leve.
Thisisgood news, because module leve (or unit) testing is considerably easier to specify and perform than
integration testing. In fact, we suggest that every module have its own unit test built into its code, and that these tests
be performed automatically as part of the regular build process (see Code That's Easy to Test).

Building unit testsisitsaf an interesting test of orthogonality. What doesit taketo build and link a unit test? Do you
have to drag in alarge percentage of the rest of the system just to get atest to compile or link? If so, you've found a
modulethat is not well decoupled from the rest of the system.

Bug fixing isaso agood time to assess the orthogonality of the system as awhole. When you come acrossa
problem, assess how localized thefix is. Do you change just one module, or are the changes scattered throughout the
entire system? When you make a change, doesit fix everything, or do other problems mysterioudy arise? Thisisa
good opportunity to bring automation to bear. If you use asource code control system (and you will after reading
Source Code Control), tag bug fixes when you check the code back in after testing. Y ou can then run monthly
reports andyzing trendsin the number of source files affected by each bug fix.

Documentation

Perhaps surprisingly, orthogonality aso applies to documentation. The axes are content and presentation. With truly
orthogona documentation, you should be able to change the appearance dramaticaly without changing the content.
Modern word processors provide style sheets and macros that help (see It's All Writing).

Living with Orthogonality

Orthogonality is closdy related to the DRY principle introduced on page 27. With DRY, you'relooking to minimize
duplication within a system, whereas with orthogonality you reduce the interdependency among the system's
components. It may be aclumsy word, but if you use the principle of orthogonaity, combined closdly with the DRY
principle, you'l find that the systems you devel op are more flexible, more understandable, and easier to debug, test,
and maintain.

If you're brought into a project where people are desperately struggling to make changes, and where every change
seemsto cause four other thingsto go wrong, remember the nightmare with the helicopter. The project probably is
not orthogonally designed and coded. It'stimeto refactor.

And, if you're ahelicopter pilot, don't eat thefish....

Related sectionsinclude:

TheEvilsof Duplicaion

Source Code Control

Design by Contract

Decoupling and the Law of Demeter

M etaprogramming

It'sdust aView

Refactoring

Code That's Easy to Test

Evil Wizards

Pragmatic Teams

[t's All Writing

Challenges

Congder the difference between large GUI-oriented tools typicaly found on Windows systems and small but
combinable command line utilities used at shell prompts. Which set is more orthogonad, and why? Whichiis
easer to usefor exactly the purpose for which it was intended? Which set is easier to combine with other
toolsto meet new challenges?

C++ supports multiple inheritance, and Java allows a classto implement multiple interfaces. What impact
does using these facilities have on orthogondity? I sthere a difference in impact between using multiple
inheritance and multiple interfaces? | s there a difference between using delegation and using inheritance?

Exercises

Y ou arewriting aclass caled Split, which splitsinput

linesinto fields. Which of the following two Javaclass
sgnauresisthe more orthogona design?

class Splitl {
public Splitl(lnputStreanReader
rdr) { ...
public void readNextLine() throws
| OException { ...
public int nunFields() { ...
public String getField(int
fieldNo) { ...
}
class Split2 {
public Split2(String line) { ...
public int nunFields() { ...
public String getField(int
fieldNo) { ...

}

Which will lead to amore orthogona design:
modeless or modal diaog boxes?

How about procedural languages versus object
technology? Which resultsin amore orthogond

Sysem”

| @ve RuBoard [Crrevious)nexr o)

| | @ve RuBoard

Reversibility
Nothing is more dangerous than an idea if it's the only one you have.

Emil-Auguste Chartier, Propossur lareligion, 1938

Engineers prefer smple, single solutionsto problems. Math tests that allow you to proclaim with great confidence that
x = 2 are much more comfortable than fuzzy, warm essays about the myriad causes of the French Revolution.
Management tends to agree with the engineers: angle, easy answersfit nicely on spreadsheets and project plans.

If only the redl world would cooperate! Unfortunately, while x is 2 today, it may need to be 5 tomorrow, and 3 next
week. Nothing isforever—and if you rely heavily on somefact, you can dmost guaranteethat it will change.

Thereisdways more than one way to implement something, and there is usualy more than one vendor available to
provide athird-party product. If you go into a project hampered by the myopic notion that thereis only one way to
doit, you may beinfor an unpleasant surprise. Many project teams have their eyesforcibly opened as the future
unfolds

"But you said we'd use database XYZ! We are 85% done coding the project, we can't change now!" the
programmer protested. "Sorry, but our company decided to standardize on database PDQ instead—for all
projects. It's out of my hands. We'll just have to recode. All of you will be working weekends until further
notice."

Changes don't have to be that Draconian, or even that immediate. But astime goes by, and your project progresses,
you may find yoursdlf stuck in an untenable position. With every critica decision, the project team commitsto a
smdller target—a narrower version of redity that hasfewer options.

By thetime many critical decisions have been made, the target becomes so smdl that if it moves, or the wind changes
direction, or abutterfly in Tokyo flgpsitswings, you miss.[41 And you may miss by a huge amount.

[4] Take a nonlinear, or chaotic, system and apply a small change to one of its inputs. You may get a large and often unpredictable result. The clichéd
butterfly flapping its wings in Tokyo could be the start of a chain of events that ends up generating a tornado in Texas. Does this sound like any
projects you know?

The problemisthat critical decisonsaren't easly reversble.

Once you decide to use this vendor's database, or that architectural pattern, or a certain deployment model
(client-server versus standa one, for instance), you are committed to a course of action that cannot be undone, except
at grest expense.

Reversibility

Many of thetopicsin thisbook are geared to producing flexible, adaptable software. By sticking to their
recommendations—especidly the DRY principle (page 26), decoupling (page 138), and use of metadata (page
144)—we don't have to make as many critical, irreversible decisons. Thisisagood thing, because we don't lways
make the best decisonsthefirst time around. We commit to a certain technology only to discover we can't hire
enough people with the necessary skills. We lock in a certain third-party vendor just before they get bought out by
their competitor. Requirements, users, and hardware change faster than we can get the software devel oped.

Suppose you decide, early in the project, to use ardationa database from vendor A. Much later, during
performance testing, you discover that the database is smply too dow, but that the object database from vendor B is
faster. With most conventiona projects, you'd be out of luck. Most of the time, calsto third-party products are
entangled throughout the code. But if you really abstracted the idea of a database out—to the point where it smply
provides persistence as a service—then you have the flexibility to change horsesin midstream.

Similarly, suppose the project begins as a client-server modd, but then, late in the game, marketing decides that
servers are too expensive for some clients, and they want a stand-alone version. How hard would that be for you?
Sinceit'sjust adeployment issue, it shouldn't take more than a few days. If it would take longer, then you haven't
thought about reversbility. The other direction is even more interesting. What if the stand-aone product you are
making needs to be deployed in aclient-server or n-tier fashion? That shouldn't be hard either.

The mistake liesin assuming that any decision is cast in ssone—and in not preparing for the contingencies that might
arise. Ingtead of carving decisonsin stone, think of them more as being written in the sand at the beach. A bigwave
can come aong and wipe them out a any time.

Tip 14

There Are No Final Decisons

Flexible Architecture

While many peopletry to keep their code flexible, you also need to think about maintaining flexibility in the areas of
architecture, deployment, and vendor integration.

Technologies such as CORBA can help insulate portions of a project from changes in development language or
platform. Isthe performance of Javaon that platform not up to expectations? Recode the client in C++, and nothing
else needsto change. Istherules enginein C++ not flexible enough? Switch over to aSmadltak verson. Witha
CORBA architecture, you have to take ahit only for the component you are replacing; the other components
shouldn't be affected.

Areyou developing for Unix? Which one? Do you have dl of the portability concerns addressed? Areyou
developing for a particular version of Windows? Which one—3.1, 95, 98, NT, CE, or 2000? How hard will it beto
support other versons? If you keep decisions soft and pliable, it won't be hard at dl. If you have poor encapsulation,
high coupling, and hard-coded logic or parametersin the code, it might beimpossible.

Not sure how marketing wants to deploy the system? Think about it up front and you can support astand-aone,
client-server, or n-tier modd just by changing a configuration file. Weve written programsthat do just thet.

Normally, you can smply hide athird-party product behind awell-defined, abstract interface. In fact, we've dways
been able to do so on any project we've worked on. But suppose you couldn't isolate it that cleanly. What if you had
to sprinkle certain statements liberally throughout the code? Put that requirement in metadata, and use some
automatic mechanism, such as Aspects (see page 39) or Perl, to insert the necessary statements into the code itself.
Whatever mechanism you use, make it reversible. If something is added automaticaly, it can be taken out
automaticaly aswdll.

No one knows what the future may hold, especidly not us! So enable your code to rock-n-roll: to "rock on" when it
can, to rall with the puncheswhen it must.

Related sectionsinclude:

Decoupling and the Law of Demeter

M etaprogramming

It'sJust aView

Challenges

Timefor alittle quantum mechanics with Schrodinger's cat. Suppose you have acet in a closed box, along
with aradioactive particle. The particle has exactly a 50% chance of fissioning into two. If it does, the cat will
bekilled. If it doesn't, the cat will be okay. So, isthe cat dead or dive? According to Schrodinger, the
correct answer is both. Every time a sub-nuclear reaction takes place that has two possible outcomes, the
universeiscloned. In one, the event occurred, in the other it didn't. The cat'salive in one universe, dead in
another. Only when you open the box do you know which universe you arein.

No wonder coding for the futureis difficult.

But think of code evolution dong the same linesas abox full of Schrodinger's cats. every decisonresultsina
different verson of the future. How many possible futures can your code support? Which ones are more
likely? How hard will it be to support them when the time comes?

Dare you open the box?

| | @ve RuBoard

| | @ve RuBoard

Tracer Bullets

Ready, fire, aim...

There aretwo waysto fireamachine gun in the dark.[5] 'Y ou can find out exactly where your target is (range,
elevation, and azimuth). Y ou can determine the environmental conditions (temperature, humidity, air pressure, wind,
and so on). Y ou can determine the preci se specifications of the cartridges and bullets you are using, and their
interactions with the actual gun you arefiring. Y ou can then use tables or afiring computer to caculate the exact
bearing and elevation of the barrdl. If everything works exactly as specified, your tables are correct, and the
environment doesn't change, your bullets should land close to their target.

[5] To be pedantic, there are many ways of firing a machine gun in the dark, including closing your eyes and spraying out bullets. But this is an analogy,
and we're allowed to take liberties.

Or you could use tracer bullets.

Tracer bullets areloaded at intervals on the ammo belt alongside regular ammunition. When they'refired, their
phosphorusignites and leaves a pyrotechnic trail from the gun to whatever they hit. If the tracers are hitting the target,
then so aretheregular bullets.

Not surprisingly, tracer bullets are preferred to the labor of caculation. The feedback isimmediate, and because they
operate in the same environment as the real ammunition, externd effects are minimized.

The analogy might be violent, but it appliesto new projects, particularly when you're building something that hasn't
been built before. Like the gunners, you're trying to hit atarget in the dark. Because your users have never seena
system like this before, their requirements may be vague. Because you may be using agorithms, techniques,
languages, or libraries you aren't familiar with, you face alarge number of unknowns. And because projectstaketime
to complete, you can pretty much guarantee the environment you're working in will change before you're done.

The classic response isto specify the system to death. Produce reams of paper itemizing every requirement, tying
down every unknown, and congtraining the environment. Fire the gun using dead reckoning. One big calculation up
front, then shoot and hope.

Pragmatic Programmers, however, tend to prefer using tracer bullets.

Code That Glowsin the Dark

Tracer bullets work because they operate in the same environment and under the same congtraints asthered bullets.
They get to the target fast, 0 the gunner gets immediate feedback. And from apractical standpoint they'rea
relatively chegp solution.

To get the same effect in code, were looking for something that gets us from a requirement to some aspect of the

find system quickly, visbly, and repesatably.

Tip 15

Use Tracer Bulletsto Find the Target

We once undertook a complex client-server database marketing project. Part of its requirement was the ability to
specify and execute tempora queries. The serverswere arange of relationa and speciaized databases. The client
GUI, written in Object Pascal, used aset of C librariesto provide an interface to the servers. The user's query was
stored on the server in a Lisp-like notation before being converted to optimized SQL just prior to execution. There
were many unknowns and many different environments, and no one was too sure how the GUI should behave.

Thiswas agreat opportunity to use tracer code. We devel oped the framework for the front end, librariesfor
representing the queries, and a structure for converting a stored query into a database-specific query. Then we put it
all together and checked that it worked. For that initial build, al we could do was submit aquery that listed al the
rowsin atable, but it proved that the Ul could talk to the libraries, the libraries could seridize and unseridize aquery,
and the server could generate SQL from the result. Over the following months we gradually fleshed out thisbasic
structure, adding new functiondity by augmenting each component of thetracer codein parallel. When the Ul added
anew query type, the library grew and the SQL generation was made more sophisticated.

Tracer codeis not disposable: you write it for keegps. It contains dl the error checking, structuring, documentation,
and self-checking that any piece of production code has. It smply isnot fully functiona. However, once you have
achieved an end-to-end connection among the components of your system, you can check how closeto the target
you are, adjusting if necessary. Once you're on target, adding functiondity is easy.

Tracer development is consstent with the idea that aproject is never finished: there will dways be changes required
and functionsto add. It isan incrementa approach.

The conventiona dternativeisakind of heavy engineering approach: code is divided into modules, which are coded
in avacuum. Modules are combined into subassemblies, which are then further combined, until one day you havea
complete application. Only then can the application as awhole be presented to the user and tested.

The tracer code approach has many advantages.

Users get to see something working early. If you have successfully communicated what you are doing
(see Great Expectations), your userswill know they are seeing something immeature. They won't be
disappointed by alack of functiondity; they'll be ecstatic to see some visible progresstoward their system.
They a s0 get to contribute as the project progresses, increasing their buy-in. These same userswill likely be
the people who'll tell you how closeto thetarget eech iterationiis.

Developersbuild astructuretowork in. Themost daunting piece of paper isthe one with nothing

written onit. If you have worked out al the end-to-end interactions of your gpplication, and have embodied
them in code, then your team won't need to pull as much out of thin air. This makes everyone more
productive, and encourages cons stency.

You have an integration platform. Asthe system is connected end-to-end, you have an environment to
which you can add new pieces of code once they have been unit-tested. Rather than attempting a big-bang
integration, you'll be integrating every day (often many timesaday). Theimpact of each new changeis more
gpparent, and the interactions are more limited, so debugging and testing are faster and more accurate.

Y ou have something to demonstrate. Project sponsors and top brass have a tendency to want to see
demos at the most inconvenient times. With tracer code, you'll dways have something to show them.

You have a better feel for progress. Inatracer code development, devel opers tackle use cases one by
one. When one isdone, they moveto the next. It isfar easier to measure performance and to demonstrate
progressto your user. Because each individua development is smaller, you avoid creating those monoalithic
blocks of code that are reported as 95% compl ete week after week.

Tracer Bullets Don't Always Hit Their Target

Tracer bullets show what you're hitting. This may not always be the target. Y ou then adjust your am until they'reon
target. That's the point.

It'sthe same with tracer code. Y ou use the technique in Situations where you're not 100% certain of where you're
going. Y ou shouldn't be surprised if your first couple of attempts miss: the user says "that's not what | meant,” or data
you need isn't available when you need it, or performance problems seem likely. Work out how to change what
you've got to bring it nearer the target, and be thankful that you've used alean development methodology. A small
body of code haslow inertia—it is easy and quick to change. Y ou'll be able to gather feedback on your application
and generate anew, more accurate version faster and at less cost than with any other method. And because every
major application component is represented in your tracer code, your users can be confident that what they're seeing
Is based on redlity, not just a paper specification.

Tracer Code versus Prototyping

Y ou might think that thistracer code concept is nothing more than prototyping under an aggressive name. Thereisa
difference. With a prototype, you're aming to explore specific aspects of the final system. With atrue prototype, you
will throw away whatever you lashed together when trying out the concept, and recodeit properly using the lessons
you've learned.

For example, say you're producing an gpplication that helps shippers determine how to pack odd-sized boxesinto
containers. Among other problems, the user interface needs to be intuitive and the algorithms you use to determine

optimal packing are very complex.

Y ou could prototype auser interface for your end usersin a GUI tool. Y ou code only enough to make the interface
respongive to user actions. Once they've agreed to the layout, you might throw it away and recodeit, thistime with
the businesslogic behind it, usng the target language. Similarly, you might want to prototype a number of agorithms
that perform the actud packing. Y ou might code functiond testsin ahigh-levd, forgiving language such as Perl, and
code low-leve performance testsin something closer to the machine. In any case, once you'd made your decision,
you'd sart again and code the dgorithmsin their fina environment, interfacing to the redl world. Thisis prototyping,
anditisvery ussful.

The tracer code approach addresses a different problem. Y ou need to know how the application as awhole hangs
together. Y ou want to show your users how the interactionswill work in practice, and you want to give your
deveopers an architectura skeleton on which to hang code. In this case, you might construct atracer congsting of a
trivia implementation of the container packing algorithm (maybe something like first-come, firgt-served) and asmple
but working user interface. Once you have al the componentsin the application plumbed together, you have a
framework to show your users and your devel opers. Over time, you add to thisframework with new functiondity,
completing stubbed routines. But the framework staysintact, and you know the system will continue to behave the
way it did when your firgt tracer code was completed.

Thedigtinction isimportant enough to warrant repesting. Prototyping generates disposable code. Tracer codeislean
but complete, and forms part of the skeleton of thefina system. Think of prototyping as the reconnai ssance and
intelligence gathering that takes place before asingle tracer bullet isfired.

Related sectionsinclude:

Good-Enough Software

Prototypes and Post-it Notes

The Specification Trap

Great Expectations

| | @ve RuBoard

| | @ve RuBoard

Prototypes and Post-it Notes

Many different industries use prototypesto try out specific ideas; prototyping is much chegper than full-scale
production. Car makers, for example, may build many different prototypes of anew car design. Each oneis designed
to test a specific agpect of the car—the aerodynamics, styling, structura characteristics, and so on. Perhaps aclay
model will be built for wind tunnd testing, maybe a ba sawood and duct tape modd will do for the art department,
and so on. Some car companies take this a step further, and now do a greet deal of modeling work on the computer,
reducing cogts even further. Inthisway, risky or uncertain e ements can be tried out without committing to building
thered item.

We build software prototypes in the same fashion, and for the same reasons—to analyze and expose risk, and to
offer chances for correction at agreatly reduced cost. Like the car makers, we can target a prototype to test one or

more specific aspects of a project.

Wetend to think of prototypes as code-based, but they don't lways have to be. Like the car makers, we can build
prototypes out of different materials. Post-it notes are great for prototyping dynamic things such as workflow and
application logic. A user interface can be prototyped as a drawing on awhiteboard, as a nonfunctiona mock-up
drawn with apaint program, or with an interface builder.

Prototypes are designed to answer just afew questions, so they are much cheaper and faster to devel op than
gpplicationsthat go into production. The code can ignore unimportant details—unimportant to you at the moment,
but probably very important to the user later on. If you are prototyping a GUI, for instance, you can get away with
incorrect results or data. On the other hand, if you're just investigating computationa or performance aspects, you
can get away with a pretty poor GUI, or perhaps even no GUI at dl.

But if you find yourself in an environment where you cannot give up the details, then you need to ask yoursdlf if you
areredly building aprototype at dl. Perhaps atracer bullet style of development would be more gppropriatein this
case (see Tracer Bullets).

Thingsto Prototype

What sorts of things might you choose to investigate with a prototype? Anything that carriesrisk. Anything that hasn't

been tried before, or that is absolutely critical to the fina system. Anything unproven, experimental, or doubtful.
Anything you aren't comfortable with. Y ou can prototype

Architecture

New functiondity in an exiging sysem

Structure or contents of externa data

Third-party tools or components

Performance issues

User interface design

Prototyping is alearning experience. Itsvaue lies not in the code produced, but in the lessons learned. That'sredly
the point of prototyping.

Tip 16

Prototypeto Learn

How to Use Prototypes

When building a prototype, what details can you ignore?

Correctness. 'Y ou may be able to use dummy data where gppropriate.

Completeness. The prototype may function only in avery limited sense, perhaps with only one preselected
piece of input data and one menu item.

Robustness. Error checkingislikdy to beincomplete or missing entirdly. If you stray from the predefined
path, the prototype may crash and burn in aglorious display of pyrotechnics. That's okay.

Style. Itispanful to admit thisin print, but prototype code probably doesn't have much in theway of
comments or documentation. Y ou may produce reams of documentation as aresult of your experience with
the prototype, but comparatively very little on the prototype system itself.

Since aprototype should gloss over details, and focusin on specific aspects of the system being considered, you may
want to implement prototypes using avery high-level language—higher than the rest of the project (maybe alanguage

such as Perl, Python, or Tdl). A high-level scripting language lets you defer many details (including specifying data
types) and still produce afunctiona (albeit incomplete or dow) piece of code.[6] If you need to prototype user
interfaces, investigate tools such as Tcl/Tk, Visua Basic, Powerbuilder, or Delphi.

[6] If you are investigating absolute (instead of relative) performance, you will need to stick to a language that is close in performance to the target
language.

Scripting languages work well asthe "glue’ to combine low-leve piecesinto new combinations. Under Windows,
Visua Basic can glue together COM controls. More generdly, you can use languages such as Perl and Python to
bind together low-level C libraries—either by hand, or automatically with tools such asthe fredly available SWIG |
URL 28]. Using this approach, you can rapidly assemble existing componentsinto new configurationsto see how
thingswork.

Prototyping Architecture

Many prototypes are constructed to model the entire system under consideration. As opposed to tracer bullets, none
of theindividua modulesin the prototype system need to be particularly functiond. In fact, you may not even need to
code in order to prototype architecture—you can prototype on awhiteboard, with Pogt-it notes or index cards.

What you are looking for is how the system hangs together as awhole, again deferring details. Here are some
Specific areas you may want to look for in the architectura prototype:

Arethe responshilities of the mgor components well defined and appropriate?

Are the collaborations between mgor componentswell defined?

Iscoupling minimized?

Can you identify potential sources of duplication?

Areinterface definitions and congtraints acceptabl €?

Does every module have an access path to the data it needs during execution? Does it have that access when

it needsit?

Thislast item tends to generate the most surprises and the most valuable results from the prototyping experience.

How Not to Use Prototypes

Before you embark on any code-based prototyping, make sure that everyone understands that you are writing
disposable code. Prototypes can be deceptively attractive to people who don't know that they are just prototypes.
Y ou must makeit very clear that this code is disposable, incomplete, and unable to be completed.

It's easy to become mided by the apparent completeness of a demonstrated prototype, and project sponsors or
management may indst on deploying the prototype (or its progeny) if you don't set the right expectations. Remind
them that you can build a gresat prototype of anew car out of balsawood and duct tape, but you wouldn't try to drive
itin rush-hour traffic!

If you fed thereisastrong possibility in your environment or culture that the purpose of prototype code may be
misinterpreted, you may be better off with the tracer bullet approach. Y ou'll end up with a solid framework on which
to base future devel opment.

When used properly, aprototype can save you huge amounts of time, money, pain, and suffering by identifying and
correcting potentia problem spots early in the devel opment cycle—the time when fixing mistakesis both cheap and

easy.

Related sectionsinclude:

The Cat Ate My Source Code

Communicatel

Tracer Bullets

Great Expectations

Exercises

Marketing would liketo St down and brainstorm a
few Web-page designswith you. They arethinking of
clickable image mapsto take you to other pages, and
S0 on. But they can't decide on amodé for the
image—maybeit'sacar, or aphone, or ahouse. You
havealist of target pages and content; they'd liketo
see afew prototypes. Oh, by the way, you have 15
minutes. What tools might you use?

| | @ve RuBoard

| | @ve RuBoard

Domain Languages

The limits of language are the limits of one's world.
Ludwig Von Wittgenstein

Computer languages influence how you think about a problem, and how you think about communicating. Every
language comes with alist of festures—buzzwords such as static versus dynamic typing, early versuslate binding,
inheritance models (sngle, multiple, or none)—all of which may suggest or obscure certain solutions. Designing a
solution with Ligp in mind will produce different results than a solution based on C-gtyle thinking, and vice versa,
Conversdly, and we think more importantly, the language of the problem domain may aso suggest a programming
solution.

We dwaystry to write code using the vocabulary of the application domain (see The Requirements Fit, where we
suggest using aproject glossary). In some cases, we can go to the next level and actualy program using the
vocabulary, syntax, and semantics—the language—of the domain.

When you listen to users of a proposed system, they might be able to tell you exactly how the system should work:

Listen for transactions defined by ABC Regulation 12.3 on a set of X.25 lines, translate themto XYZ
Company's format 43B, retransmit them on the satellite uplink, and store for future analysis.

If your users have anumber of such well-bounded statements, you can invent amini-language tailored to the
gpplication domain that expresses exactly what they want:

From X25L1 NE1 (For mat =ABC123) {
Put TELSTAR1 (For mat =XYZ43B);
Store DB;

}

This language need not be executable. Initidly, it could be smply away of capturing the user's requirements—a
specification. However, you may want to consder taking thisa step further and actudly implementing the language.
Y our specification has become executable code.

After you've written the application, the users give you anew requirement: transactions with negative balances
shouldn't be stored, and should be sent back on the X.25 linesin the origina format:

From X25L1 NE1 (For mat =ABC123) {
i f (ABC123. bal ance < 0) {
Put X25LI NE1 (For mat =ABC123) ;
}
el se {
Put TELSTAR1 (For mat =XYZ43B);

Store DB;

}
}

That was easy, wasn't it? With the proper support in place, you can program much closer to the application domain.
We're not suggesting that your end users actually program in these languages. Instead, you're giving yoursdlf atool
that lets you work closer to their domain.

Tip 17

Program Close to the Problem domain

Whether it'sasmple language to configure and control an gpplication program, or amore complex language to
specify rules or procedures, we think you should consider ways of moving your project closer to the problem
domain. By coding at ahigher level of abstraction, you are free to concentrate on solving domain problems, and can
ignore petty implementation detalls.

Remember that there are many users of an application. There's the end user, who understands the business rules and
the required outputs. There are also secondary users. operations staff, configuration and test managers, support and
mai ntenance programmers, and future generations of developers. Each of these users hastheir own problem domain,
and you can generate mini-environments and languagesfor al of them.

Domain-Specific Errors

If you are writing in the problem domain, you can aso perform domain-specific vaidation, reporting
problemsin terms your users can understand. Take our switching application on on the facing page.
Suppose the user misspelled the format name:

From X25L1 NE1 (For mat =AB123)

If this happened in astandard , general-purpose programming language, you might receive a standard,
general-purpose error message:

Syntax error: undeclared identifier

But with amini-launguage, you would instead be able to issue an error message using the vocabulary of
thedomain:

"AB123" is not a format. known fornmats are ABC123,
XYZ43B, PD@B, and 42.

| mplementing a Mini-Language

At itssmplest, amini-language may bein aline-oriented, easily parsed format. In practice, we probably use thisform
more than any other. It can be parsed smply using switch statements, or using regular expressonsin scripting
languages such as Perl. The answer to Exercise 5 on page 281 shows asimple implementationin C.

Y ou can dso implement amore complex language, with amore forma syntax. Thetrick hereisto define the syntax
first using anotation such as BNF.[7] Once you have your grammar specified, itisnormally trivid to convert it into the
input syntax for aparser generator. C and C++ programmers have been using yacc (or itsfredly available
implementation, bison [URL 27]) for years. These programs are documented in detail in the book Lex and Yacc [
LMB92]. Java programmers can try javaCC, which can be found at [URL 26]. The answer to Exercise 7 on page
282 shows a parser written using bison. Asit shows, once you know the syntax, it'sredlly not alot of work to write

smplemini-languages.

[7] BNF, or Backus-Naur Form, lets you specify context-free grammars recursively. Any good book on compiler construction or parsing will cover BNF
in (exhaustive) detail.

Theres another way of implementing amini-language: extend an existing one. For example, you could integrate
goplication-levd functiondity with (say) Python [URL 9] and write something likelsl

[8] Thanks to Eric Vought for this example.

record = X25LI NEL. get (f or mat =ABC123)
if (record.bal ance < 0):

X25L1 NE1. put (record, fornmat=ABC123)
el se:

TELSTARL. put (record, format=XYZ43B)

DB. st ore(record)

Data L anguages and I mper ative L anguages

The languages you implement can be used in two different ways.

Data languages produce some form of data structure used by an application. These languages are often used to
represent configuration informetion.

For example, the sendmail program is used throughout the world for routing e-mail over the Internet. It has many
excdlent features and benefits, which are controlled by athousand-line configuration file, written using sendmail's own

configuration language:

M ocal , P=/usr/bin/procmail,
F=I sDFMAWS : /| @SPf hn9,
S=10/ 30, R=20/ 40,
T=DNS/ RFC822/ X- Uni X,
A=procmail -Y -a $h -d $u

Obvioudy, readability is not one of sendmail's strengths.

For years, Microsoft has been using a data language that can describe menus, widgets, dialog boxes, and other
Windows resources. Figure 2.2 on the next page shows an excerpt from atypica resourcefile. Thisisfar easer to
read than the sendmail example, but it is used in exactly the same way—it is compiled to generate adata Structure.

Figure2.2. Windows.rcfile
MAIN_MENU MENU
{
POPUFP "&File"
{
MENUITEM "&New", CM_FILENEW
MENUITEM "&Open...", CM_FILEOPEN
MENUITEM “&Save”, CM_FILESAVE
}
}
MY_DIALOG_BOX DIALOG 6, 15, 292, 287
STYLE DS_MODALFRAME | WS_POPUP | WS_VISIELE |
WS_CAFTION | WS_SYSMENU
CAPTION "My Dialog Box"
FONT 8, "MS Sans Serif"”
{
DEFPUSHBUTTON "OK", ID_OK, 232, 16, 50, 14
PUSHBUTTOMN "Help"™, ID_HELP, 232, 52, 50, 14
CONTROL "Edit Text Control®™, ID_EDIT],
"EDIT", WS_BORDER | WS_TABSTOF, 16, 16, 80, L6
CHECKEBOX "Checkbox™, ID_CHECKEBOX1, 153, 65, 42, 38,
BS_AUTOCHECKEOX | WS_TAESTOP
}

Imper ative languages take this a step further. Here the language is actually executed, and so can contain statements,
control congtructs, and the like (such as the script on page 58).

Y ou can aso use your own imperative languages to ease program maintenance. For example, you may be asked to
Integrate information from alegacy agpplication into your new GUI development. A common way of achieving thisis
by screen scraping; your gpplication connects to the mainframe gpplication asif it were aregular human user, issuing
keystrokes and "reading” the responsesit gets back. Y ou could script the interaction using amini-language.[9]

[9] In fact, you can buy tools that support just this kind of scripting. Y ou can also investigate open-source packages such as Expect, which provide
similar capabilities[URL 24].

| ocate pronpt "SSN: "
type "%" social _security_nunber
type enter

wai t f or keyboar dunl ock

if text_at(10,14) is "INVALID SSN' return bad_ssn
if text_at(10,14) is "DUPLI CATE SSN' return dup_ssn
etc...

When the gpplication determinesit istime to enter a Socia Security number, it invokesthe interpreter on this script,
which then controlsthe transaction. If the interpreter is embedded within the application, the two can even share data
directly (for example, viaa calback mechanism).

Here you're programming in the maintenance programmer's domain. When the mainframe gpplication changes, and
the fields move around, the programmer can Smply update your high-level description, rather than groveling around
in the details of C code.

Stand-Alone and Embedded L anguages
A mini-language doesn't have to be used directly by the application to be useful. Many timeswe may usea

specification language to cregte artifacts (including metadata) that are compiled, read-in, or otherwise used by the
program itself (see Metaprogramming).

For example, on page 100 we describe a system in which we used Perl to generate alarge number of derivations
from an original schema specification. We invented acommon language to express the database schema, and then
generated al theforms of it we needed—SQL, C, Web pages, XML, and others. The application didn't use the
specification directly, but it relied on the output produced fromiit.

It iscommon to embed high-level imperative languages directly into your application, so that they execute when your
coderuns. Thisisclearly apowerful capability; you can change your application's behavior by changing the scriptsit
reads, al without compiling. This can sgnificantly smplify maintenance in adynamic gpplication domain.

Easy Development or Easy M aintenance?
Wevelooked at severd different grammars, ranging from smple line-oriented formats to more complex grammars

that look like real languages. Since it takes extra effort to implement, why would you choose amore complex
grammar?

Thetrade-off is extendibility and maintenance. While the codefor parsing a"redl” language may be harder to write, it
will be much easier for people to understand, and to extend in the future with new features and functiondity.

Languages that are too smple may be easy to parse, but can be cryptic—much like the sendmail example on page
60.

Given that most applications exceed their expected lifetimes, you're probably better off biting the bullet and adopting
the more complex and readable language up front. Theinitia effort will be repaid many timesin reduced support and
mai ntenance costs.

Related sectionsinclude:

Metgprogranming

Challenges

Could some of the requirements of your current project be expressed in a domain-specific language? Would
it be possible to write acompiler or trandator that could generate most of the code required?

If you decide to adopt mini-languages asaway of programming closer to the problem domain, you're
accepting that some effort will be required to implement them. Can you see ways in which the framework you
develop for one project can be reused in others?

Exercises

| | @ve RuBoard

We want to implement amini-language to control a
simple drawing package (perhaps aturtle-graphics
sysem). Thelanguage conssts of Sngle-letter
commands. Some commands are followed by asingle
number. For example, the following input would draw

arectangle.

P 2 # select pen 2

D # pen down

W2 # draw west 2cm
N1 # then north 1

E 2 # then east 2

S 1 # then back south
U # pen up

Implement the code that parsesthislanguage. It
should be designed so that it is Ssmple to add new
commands.

Design aBNF grammar to parse atime specification.
All of thefollowing examples should be accepted.

4pm 7:38pm 23:42, 3:16, 3:16am

Implement aparser for the BNF grammar in Exercise
6 using yacc, bison, or asimilar parser-generator .

Implement thetime parser using Perl. [Hint: Regular
expressions make good parsers]

| | @ve RuBoard

Estimating

Quick! How long will it take to send War and Peace over a56k modem line? How much disk space will you need
for amillion names and addresses? How |ong does a 1,000-byte block take to pass through a router? How many
monthswill it take to deliver your project?

At onelevd, these are al meaningless questions—they are al missing information. And yet they can dl be answered,
aslong asyou are comfortable estimating. And, in the process of producing an estimate, you'll come to understand
more about the world your programs inhabit.

By learning to estimate, and by developing this skill to the point where you have an intuitive fed for the magnitudes of
things, you will be able to show an gpparent magicd ability to determine their feasibility. When someone says "well
send the backup over an ISDN lineto the central Ste,” you'll be able to know intuitively whether thisis practica.
When you're coding, you'l be able to know which subsystemns need optimizing and which ones can be left done.

Tip 18

Estimate to Avoid Surprises

Asabonus, a the end of this section welll reved the single correct answer to give whenever anyone asks you for an
edimate.

How Accurate Is Accurate Enough?

To some extent, dl answers are estimates. It'sjust that some are more accurate than others. So thefirst question you
have to ask yoursdlf when someone asks you for an estimate is the context in which your answer will be taken. Do
they need high accuracy, or are they looking for a ballpark figure?

If your grandmother asks when you will arrive, she's probably wondering whether to make you lunch or
dinner. On the other hand, adiver trapped underwater and running out of air is probably interested in an
answer down to the second.

What'sthe value of p?If you're wondering how much edging to buy to put around acircular flower bed, then
"3" isprobably good enough.[10] If you'rein school, then maybe "22/7" isagood approximation. If you'rein
NASA, then maybe 12 decimal placeswill do.

[10] "3" is aso apparently good enough if you are alegislator. In 1897, Indiana State L egislature House Bill No. 246 attempted to decree that
henceforth p should have the value of "3". The Bill was tabled indefinitely at its second reading when a mathematics professor pointed out
that their powers did not quite extend to passing laws of nature.

One of theinteresting things about estimating is that the units you use make adifference in theinterpretation of the
result. If you say that something will take about 130 working days, then people will be expecting it to comein pretty
close. However, if you say "Oh, about six months,” then they know to look for it any time between five and seven
months from now. Both numbers represent the same duration, but "130 days' probably implies a higher degree of
accuracy than you fed. We recommend that you scale time estimates as follows:

Duration Quote estimatein

1-15 days days

3-8 weeks weeks

8-30 weeks months

30+ weeks think hard before giving an estimate

o, if after doing al the necessary work, you decide that a project will take 125 working days (25 weeks), you might
want to deliver an estimate of "about Sx months.”

The same concepts apply to estimates of any quantity: choose the units of your answer to reflect the accuracy you
intend to convey.

Where Do Estimates Come From?

All estimates are based on models of the problem. But before we get too deeply into the techniques of building
models, we have to mention abasic estimating trick that ways gives good answers. ask someone who's dready
doneit. Before you get too committed to model building, cast around for someone who's beenin asimilar Stuationin

the past.

See how their problem got solved. It'sunlikely you'll ever find an exact match, but you'd be surprised how many
times you can successfully draw on other's experiences.

Understand What's Being Asked

Thefirg part of any estimation exerciseis building an understanding of what's being asked. Aswadll asthe accuracy
Issues discussed above, you need to have agrasp of the scope of the domain. Often thisisimplicit in the question, but
you need to make it a habit to think about the scope before starting to guess. Often, the scope you choose will form
part of the answer you give: "Assuming there are no traffic accidents and there's gasin the car, | should be therein 20
minutes.”

Build a Model of the System

Thisisthe fun part of estimating. From your understanding of the question being asked, build arough and ready
bare-bones menta modd . If you're estimating response times, your model may involve aserver and some kind of
arriving traffic. For aproject, the mode may be the steps that your organi zation uses during devel opment, along with
avery rough picture of how the system might be implemented.

Modd building can be both creative and useful in the long term. Often, the process of building the modd leadsto
discoveries of underlying patterns and processes that weren't gpparent on the surface. Y ou may even want to

reexaminethe origind question: "Y ou asked for an estimate to do X. However, it lookslike Y, avariant of X, could
be donein about half the time, and you lose only one festure.”

Building the modd introduces inaccuraciesinto the estimating process. Thisisinevitable, and also beneficid. You are
trading off model smplicity for accuracy. Doubling the effort on the mode may give you only adight increasein
accuracy. Y our experience will tell you when to stop refining.

Break the Model into Components

Once you have amodd, you can decompose it into components. Y ou'll need to discover the mathematica rulesthat
describe how these components interact. Sometimes a component contributes asingle vaue that is added into the
result. Some components may supply multiplying factors, while others may be more complicated (such as those that
smulatethe arrival of traffic at anode).

You'll find that each component will typically have parameters that affect how it contributesto the overall modd. At
this stage, amply identify each parameter.

Give Each Parameter aValue

Once you have the parameters broken out, you can go through and assign each one avalue. Y ou expect to introduce
some errorsin this step. Thetrick isto work out which parameters have the most impact on the result, and
concentrate on getting them about right. Typicaly, parameters whose values are added into aresult are less significant
than those that are multiplied or divided. Doubling aline speed may double the amount of datareceived in an hour,
while adding a5 mstrangt delay will have no noticeabl e effect.

Y ou should have ajustifiable way of calculating these critica parameters. For the queuing example, you might want to
measure the actud transaction arrival rate of the existing system, or find asimilar system to measure. Smilarly, you
could measure the current time taken to serve arequest, or come up with an estimate using the techniques described
inthissection. In fact, you'l often find yoursalf basing an estimate on other subestimates. Thisiswhere your largest
errorswill cregpin.

Calculatethe Answers

Only inthe smplest of caseswill an estimate have asingle answer. Y ou might be happy to say "I can walk five
cross-town blocksin 15 minutes." However, as the systems get more complex, you'll want to hedge your answers.
Run multiple calculations, varying the values of the critical parameters, until you work out which onesredlly drivethe
moddl. A spreadsheet can be abig help. Then couch your answer in terms of these parameters. "The responsetimeis
roughly three quarters of asecond if the system hasa SCSl bus and 64M B memory, and one second with 48MB
memory." (Notice how "three quarters of asecond" conveys adifferent feeing of accuracy than 750 ms.)

During the calculation phase, you may start getting answers that seem strange. Don't be too quick to dismissthem. If
your arithmetic is correct, your understanding of the problem or your mode is probably wrong. Thisisvauable
informetion.

Keep Track of Your Estimating Prowess

Wethink it'sagreat ideato record your estimates so you can see how close you were. If an overdl estimate involved

caculating subestimates, keep track of these aswell. Often you'l find your estimates are pretty good—in fact, after a
while, you'll cometo expect this.

When an estimate turns out wrong, don't just shrug and walk away. Find out why it differed from your guess. Maybe
you chose some parameters that didn't match the redlity of the problem. Maybe your mode was wrong. Whatever
the reason, take some time to uncover what happened. If you do, your next estimate will be better.

Estimating Project Schedules

The normd rules of estimating can break down in the face of the complexities and vagaries of asizable gpplication
development. We find that often the only way to determine the timetable for aproject is by gaining experience on that
same project. Thisneedn't be aparadox if you practice incrementa devel opment, repeating the following steps.

Check requirements

Andyzerisk

Desgn, implement, integrate

Vdidate with the users

Initidly, you may have only avague ideaof how many iterationswill be required, or how long they may be. Some
methods require you to nail thisdown as part of theinitia plan, but for all but the most trivia of projectsthisisa
mistake. Unless you are doing an application similar to a previous one, with the same team and the same technology,
you'd just be guessing.

So you complete the coding and testing of theinitia functiondity and mark thisasthe end of thefirst increment.
Based on that experience, you can refine your initia guess on the number of iterations and what can beincluded in
each. The refinement gets better and better each time, and confidence in the schedule grows along withiit.

Tip 19

Iterate the Schedule with the Code

Thismay not be popular with management, who typicaly want asingle, hard-and-fast number before the project

even garts. Youll have to help them understand that the team, their productivity, and the environment will determine
the schedule. By formdizing this, and refining the schedule as part of each iteration, you'll be giving them the most

accurate scheduling estimates you can.

What to Say When Asked for an Estimate

Yousay "I'll get back to you."

Y ou dmost ways get better resultsif you dow the process down and spend some time going through the stepswe
describe in this section. Estimates given at the coffee machine will (like the coffee) come back to haunt you.

Related sectionsinclude:

Algorithm Speed

Challenges

Start keeping alog of your estimates. For each, track how accurate you turned out to be. If your error was
greater than 50%, try to find out where your estimate went wrong.

Exercises

Y ou are asked "Which has a higher bandwidth: a
1Mbps communicationsline or aperson waking
between two computers with afull 4GB tapein ther
pocket?' What congtraints will you put on your
answer to ensure that the scope of your responseis
correct? (For example, you might say that thetime
taken to access the tapeisignored.)

10.
So, which hasthe higher bandwidth?

| | @ve RuBoard

| | @ve RuBoard HE

Chapter 3. TheBasic Tools

Every craftsman sartshisor her journey with abasic set of good-quality tools. A woodworker might need rules,
gauges, acouple of saws, some good planes, fine chisdls, drills and braces, mallets, and clamps. These toolswill be
lovingly chosen, will be built to last, will perform specific jobswith little overlap with other tools, and, perhaps most
importantly, will fed right in the budding woodworker's hands.

Then begins a process of learning and adaptation. Each tool will have its own persondity and quirks, and will need its
own specia handling. Each must be sharpened in aunique way, or held just so. Over time, each will wear according
to use, until the grip looks like amold of the woodworker's hands and the cutting surface digns perfectly with the
angle at which thetool isheld. At this point, the tools become conduits from the craftsman's brain to the finished
product—they have become extensions of hisor her hands. Over time, the woodworker will add new tools, such as
biscuit cutters, laser-guided miter saws, dovetail jigs—al wonderful pieces of technology. But you can bet that he or
shewill be happiest with one of those origind toolsin hand, feding the plane sing asit dides through the wood.

Toolsamplify your talent. The better your tools, and the better you know how to use them, the more productive you
can be. Start with abasic set of generdly applicable tools. Asyou gain experience, and as you come across specia
requirements, you'll add to this basic set. Like the craftsman, expect to add to your toolbox regularly. Always be on
the lookout for better ways of doing things. If you come across a Situation where you fedl your current tools can't cut
it, make a note to look for something different or more powerful that would have helped. Let need drive your
acquistions.

Many new programmers make the mistake of adopting a single power tool, such asa particular integrated
development environment (IDE), and never leaveits cozy interface. Thisredly isamistake. We need to be
comfortable beyond the limitsimposed by an IDE. The only way to do thisisto keep the basic tool set sharp and

ready to use.

In this chapter welll talk about investing in your own basic toolbox. Aswith any good discussion on tools, well start
(in The Power of Plain Text) by looking a your raw materias, the stuff you'll be shaping. From there well moveto
the workbench, or in our case the computer. How can you use your computer to get the most out of the tools you
use? Well discussthisin Shell Games. Now that we have material and abench to work on, well turn to the tool
you'll probably use more than any other, your editor. In Power Editing, well suggest ways of making you more
efficient.

To ensure that we never lose any of our precious work, we should aways use a Sour ce Code Control
system—even for things such as our persona address book! And, since Mr. Murphy was realy an optimist after al,
you can't be agreat programmer until you become highly skilled at Debugging.

Y ou'll need some glue to bind much of the magic together. We discuss some possibilities, such as awk, Perl, and
Python, in Text Manipulation.

Just as woodworkers sometimes build jigs to guide the construction of complex pieces, programmers can write code
that itsalf writes code. We discussthisin Code Generators.

Spend time learning to use these tools, and at some point you'll be surprised to discover your fingers moving over the
keyboard, manipulating text without conscious thought. The toolswill have become extensions of your hands.

| | @ve RuBoard

| | @ve RuBoard

The Power of Plain Text

As Pragmatic Programmers, our base materia isn't wood or iron, it's knowledge. We gather requirements as
knowledge, and then express that knowledge in our designs, implementations, tests, and documents. And we believe
that the best format for storing knowledge persistently is plain text. With plain text, we give oursaves the ability to
manipulate knowledge, both manually and programmaticaly, using virtualy every tool at our disposa.

What IsPlain Text?

Plain text ismade up of printable charactersin aform that can be read and understood directly by people. For
example, athough the following snippet is made up of printable characters, it ismeaningless.

Fi el dl 9=467abe

The reader has no ideawhat the significance of 467abe may be. A better choice would be to make it under standable
to humans.

Dr awi ngType=UM_LAct i vi t yDr awi ng

Pain text doesn't mean that the text is unstructured; XML, SGML, and HTML are grest examples of plain text that
has awell-defined structure. Y ou can do everything with plain text that you could do with some binary format,
incdluding versoning.

Pain text tendsto be at ahigher leve than astraight binary encoding, which isusudly derived directly from the
implementation. Suppose you wanted to store a property called uses menusthat can be either TRUE or FALSE.
Usng text, you might write thisas

mypr op. uses_nenus=FALSE

Contrast thiswith 0010010101110101.

The problem with most binary formatsisthat the context necessary to understand the data is separate from the data
itsdlf. You are atificidly divorcing the datafrom its meaning. The datamay aswell be encrypted; it is absolutely
meaningless without the application logic to parseit. With plain text, however, you can achieve a salf-describing data
stream that isindependent of the application that created it.

Tip 20

Keep Knowledgein Plain Text

Drawbacks

There are two mgjor drawbacks to using plain text: (1) It may take more space to store than a compressed binary
format, and (2) it may be computationally more expensive to interpret and process aplain text file.

Depending on your application, either or both of these Situations may be unacceptable—for example, when storing
satellite telemetry data, or astheinternal format of arelational database.

But even in these Situations, it may be acceptable to store metadata about the raw datain plain text (see
Metaprogramming).

Some developers may worry that by putting metadatain plain text, they're exposing it to the syssem's users. Thisfear
iIsmisplaced. Binary datamay be more obscure than plain text, but it isno more secure. If you worry about users
seeing passwords, encrypt them. If you don't want them changing configuration parameters, include a secure hashi1]
of dl the parameter valuesin thefile as achecksum.

[1] MD5 is often used for this purpose. For an excellent introduction to the wonderful world of cryptography, see [Sch95].

The Power of Text

Since larger and dower aren't the most frequently requested features from users, why bother with plain text? What
are the bendfits?

Insurance against obsolescence

Leverage

Eader tegting

I nsurance Against Obsolescence

Human-readable forms of data, and self-describing data, will outlive al other forms of dataand the applications that
created them. Period.

Aslong asthe data survives, you will have achance to be able to use it—potentidly long after the origind gpplication
that wroteit is defunct.

Y ou can parse such afilewith only partid knowledge of its format; with most binary files, you must know al the
detalls of the entire format in order to parseit successtully.

Congder adatafile from somelegacy system(2] that you are given. Y ou know little about the origina application; all
that'simportant to you isthat it maintained alist of clients Social Security numbers, which you need to find and
extract. Among the data, you see

[2] All software becomes legacy as soon as it's written.

<FI ELD10>123- 45- 6789</ FI ELD10>
<FI ELD10>567- 89- 0123</ FI ELD10>

<FI ELD10>901- 23- 4567</ FI ELD10>

Recognizing the format of a Socid Security number, you can quickly write asmdl program to extract that
data—even if you have no information on anything dseinthefile.

But imagineif thefile had been formatted thisway instead:

AC27123456789B11P
XY43567890123QTYL

6T72190123456788AM

Y ou may not have recognized the significance of the numbers quite as easily. Thisisthe difference between human
readable and human under standable.

Whilewereat it, FIELD10 doesn't help much either. Something like

<SSNO>123- 45- 6789</ SSNO>

makes the exercise ano-brainer—and ensures that the datawill outlive any project that created it.

Leverage

Virtudly every toal in the computing universe, from source code management systemsto compiler environmentsto
editors and stand-alonefilters, can operate on plain text.

The Unix Philosophy

Unix isfamousfor being designed around the philosophy of smal, sharp tools, each intended to do one
thing well. Thisphilogphy isenabled by usng acommon underlying format—the line-oriented, plain text
file. Databases used for system administration (users and passwords, networking configuration, and so
on) aredl kept asplain text files. (some systems, such as Solaris, d'so maintain abinary forms of certain
databases as a performance optimization. The plain text verson is kept as an interface to the binary
verson.)

When a system crashes, you may be faced with only aminima environment to restoreit (Y ou may not
be able to access graphics drivers, for instance), Situations such as this can redly make you appreciate
thesmplicity of plain text.

For instance, suppose you have a production deployment of alarge application with acomplex site-specific
configuration file (sendmail comesto mind). If thisfileisin plain text, you could place it under a source code control
system (see Source Code Control), so that you automaticaly keep ahistory of al changes. File comparison tools
such asdiff and fc alow you to see a a glance what changes have been made, while sum alowsyou to generate a
checksum to monitor thefile for accidenta (or maicious) modification.

Easer Testing

If you use plain text to create synthetic data to drive system tests, then it isa smple matter to add, update, or modify
the test data without having to create any special tools to do so. Similarly, plain text output from regression tests
can betrividly andyzed (with diff, for instance) or subjected to more thorough scrutiny with Perl, Python, or some
other scripting toal.

L owest Common Denominator

Evenin the future of XML -based intelligent agentsthat travel the wild and dangerous Internet autonomoudly,
negotiating datainterchange among themsaves, the ubiquitoustext file will till bethere. Infact, in heterogeneous
environments the advantages of plain text can outweigh al of the drawbacks. Y ou need to ensure that al parties can

communicate using acommon standard. Plain text is that standard.

Related sectionsinclude:

Source Code Control

Code Generators

Metgorogranming

Blackboards

Ubiquitous Automation

It's All Writing

Challenges

Design asmal address book database (hame, phone number, and so on) using astraightforward binary
representation in your language of choice. Do this before reading the rest of this challenge.

1.

Trandate that format into aplain text format usng XML.

For each version, add anew, variable-length field called directions in which you might enter directionsto
each person's house.

What issues come up regarding versioning and extensibility? Which form was easier to modify? What about
converting existing data’?

| | @ve RuBoard

| | @ve RuBoard

Shdl Games

Every woodworker needs a good, solid, reliable workbench, somewhere to hold work pieces a a convenient height
while he or she works them. The workbench becomes the center of the wood shop, the craftsman returning to it time
and time again as a piece takes shape.

For a programmer manipulating files of text, that workbench isthe command shell. From the shell prompt, you can
invoke your full repertoire of tools, using pipesto combine them in ways never dreamt of by their origina developers.
From the shell, you can launch applications, debuggers, browsers, editors, and utilities. Y ou can search for files,
query the status of the system, and filter output. And by programming the shell, you can build complex macro
commands for activities you perform often.

For programmersraised on GUI interfaces and integrated devel opment environments (IDES), this might seem an
extreme position. After dl, can't you do everything equaly well by pointing and clicking?

Thesmpleanswer is"no." GUI interfaces are wonderful, and they can be faster and more convenient for some
ample operations. Moving files, reading MIME-encoded e-mail, and typing lettersare d| things that you might want
to doinagraphica environment. But if you do al your work using GUIs, you are missing out on thefull capabilities
of your environment. Y ou won't be able to automate common tasks, or use the full power of the tools available to
you. And you won't be able to combine your toolsto create customized macro tools. A benefit of GUIsis

WY SIWY G—what you seeiswhat you get. The disadvantageisWY SIAY G—what you seeis all you get.

GUI environments are normally limited to the capabilitiesthat their designersintended. If you need to go beyond the
model the designer provided, you are usualy out of luck—and more often than not, you do need to go beyond the
modd . Pragmatic Programmers don't just cut code, or devel op object models, or write documentation, or automate
the build process—we do all of these things. The scope of any onetool isusudly limited to the tasks that the tool is
expected to perform. For instance, suppose you need to integrate a code preprocessor (to implement
design-by-contract, or multi-processing pragmeas, or some such) into your IDE. Unlessthe designer of the IDE
explicitly provided hooks for this capability, you can't doiit.

Y ou may aready be comfortable working from the command prompt, in which case you can safely skip this section.
Otherwise, you may need to be convinced that the shell isyour friend.

AsaPragmatic Programmer, you will constantly want to perform ad hoc operations—things that the GUI may not
support. The command lineis better suited when you want to quickly combine acouple of commandsto perform a
query or some other task. Here are afew examples.

Find all .c files modified more recently than your Makefile.

Shl...
find . -name ' *.c' -newer Makefile -print

GUI.....

Construct a zip/tar archive of my source.

GUI....

Open the Explorer, navigate to the correct directory, click on the
Makefile, and note the modification time. Then bring up
Tools/Find, and enter *.c for the file specification. Select the date
tab, and enter the date you noted for the Makefile in the first
datefield. Then hit OK.

zip archive.zip *.h *.c -or -
tar cvf archive.tar *.h *.c

Bring up a ZIP utility (such as the shareware WinZip [URL 41],
select "Create New Archive," enter its name, select the source
directory in the add dialog, set the filter to "* .c", click "Add,"

set thefilter to"* .h", click "Add," then close the archive.”

Which Java files have not been changed in the last week?

Shl...

GUI....

Of those files, which use the awt libraries?

Shl...

GUI....

find . -name '*.java' -ntime +7 -print

Click and navigate to "Find files," click the "Named" field and
typein"*.java', select the "Date Modified" tab. Then select
"Between." Click on the starting date and type in the starting
date of the beginning of the project. Click on the ending date and
typein the date of aweek ago today (be sure to have a calendar
handy). Click on "Find Now."

find . -name '*.java' -ntime +7 -print |
xargs grep 'java.awt'

Load each filein thelist from the previous example into an editor
and search for the string "java.awt". Write down the name of
each file containing amatch.

Clearly thelist could go on. The shell commands may be obscure or terse, but they are powerful and concise. And,
because shell commands can be combined into script files (or command files under Windows systems), you can build

sequences of commands to automate things you do often.

Tip 21

Use the Power of Command Shells

Gain familiarity with the shell, and you'll find your productivity soaring. Need to create alist of dl the unique package
names explicitly imported by your Java code? Thefollowing soresitin afilecaled "ligt."

grep '“inport ' *.java |
sed -e's/.*import *//' -e's/;.*$//" |
sort -u >list

If you haven't spent much time exploring the capabilities of the command shell on the systems you use, this might
gopear daunting. However, invest some energy in becoming familiar with your shell and thingswill soon art faling
into place. Play around with your command shell, and you'll be surprised at how much more productive it makes you.

Shell Utilitiesand Windows Systems

Although the command shdlls provided with Windows systems are improving gradudly, Windows command-line
utilitiesare dtill inferior to their Unix counterparts. However, dl isnot logt.

Cygnus Solutions has a package called Cygwin [URL 31]. Aswell asproviding aUnix compatibility layer for
Windows, Cygwin comes with a collection of more than 120 Unix utilities, including such favorites as 1s, grep, and
find. The utilities and libraries may be downloaded and used for free, but be sure to read their license.[3] The Cygwin
digtribution comeswith the Bash shell.

[3] The GNU General Public License [URL 57] isakind of legal virus that Open Source developers use to protect their (and your) rights. Y ou should
spend some time reading it. In essence, it says that you can use and modify GPL'd software, but if you distribute any modifications they must be licensed
according to the GPL (and marked as such), and you must make source available. That's the virus part—whenever you derive awork from a GPL'd work,
your derived work must also be GPL'd. However, it does not limit you in any way when simply using the tools—the ownership and licensing of software
developed using the tools are up to you.

Using Unix Tools Under Windows

Welovethe availability of high-qudity Unix tools under Windows, and use them daily. However, be
awarethat there are integration issues. Unlike their Ms-dos counterparts, these utilities are sendtive to
the case of filenames, so Isa*.bat won't find AUTOEXEC.BAT. Y ou may aso come across problems
with filenames containing spaces, and with differencesin path separators. Findly, there are interesting
problems when running Ms-dos programs that expect Ms-DOS-style arguments under the Unix shdlls,
For examples, the Java utilities from JavaSoft use acolon astheir CLASSPATH separators under Unix,
but use a semicolon under MS-DOS. Asaresult, aBash or ksh script that runs on aUnix box will run
identically under Windows, but the command line it passesto Javawill be interpreted incorrectly.

Alternatively, David Korn (of Korn shell fame) has put together a package called uwin. Thishasthe sameamsasthe
Cygwin digtribution—it isa Unix development environment under Windows. UWIN comeswith aversion of the
Korn shell. Commercid versons are available from Globa Technologies, Ltd. [URL 30]. Inaddition, AT& T alows
free downloading of the package for evaluation and academic use. Again, read their license before using.

Finaly, Tom Chridiansenis (at the time of writing) putting together Perl Power Tools, an attempt to implement all
the familiar Unix utilities portably, in Perl [URL 32],

Related sectionsinclude:

Ubiquitous Automation

Challenges

Arethere thingsthat you're currently doing manualy in aGUI? Do you ever passingructionsto colleagues
that involve anumber of individua "click thisbutton,” "sdect thisitem™ steps? Could these be automated?

Whenever you moveto anew environment, make apoint of finding out what shellsare available. Seeif you
can bring your current shell with you.

Investigate dternatives to your current shell. If you come across a problem your shell can't address, seeif an
aternative shell would cope better.

| | @ve RuBoard

| | @ve RuBoard

Power Editing

Weve talked before about tools being an extension of your hand. Well, this applies to editors more than to any other
software tool. Y ou need to be able to manipulate text as effortlesdy as possible, because text isthe basic raw
materid of programming. Let'slook at some common features and functions that help you get the most from your
editing environment.

One Editor

Wethink it is better to know one editor very well, and useit for al editing tasks. code, documentation, memas,
system adminigtration, and so on. Without asingle editor, you face a potential modern day Babel of confusion. You
may have to use the built-in editor in each language's IDE for coding, and an al-in-one office product for
documentation, and maybe a different built-in editor for sending e-mail. Even the keystrokes you use to edit
command linesin the shell may be different.[4] It isdifficult to be proficient in any of these environmentsif you havea
different set of editing conventions and commandsin each.

[4] Ideally, the shell you use should have keybindings that match the ones used by your editor. Bash, for instance, supports both vi and emacs
keybindings.

Y ou need to be proficient. Smply typing linearly and using amouse to cut and pasteis not enough. You just can't be

~| |BACKSPACE|
aseffective that way as you can with apowerful editor under your fingers. Typing or - £ IC:E--ten

times to move the cursor |eft to the beginning of alineisn't as efficient astyping asingle key such as LEJ[s

Ol

Tip 22

Usea Single Editor Well

Choose an editor, know it thoroughly, and useit for dl editing tasks. If you use asingle editor (or set of keybindings)
across dl text editing activities, you don't have to stop and think to accomplish text manipulation: the necessary
keystrokeswill be areflex. The editor will be an extension of your hand; the keyswill sSng asthey dicetheir way
through text and thought. That's our god.

Make sure that the editor you choose is available on al platformsyou use. Emacs, vi, CRiSP, Brief, and othersare
available across multiple platforms, often in both GUI and non-GUI (text screen) versions.

Editor Features

Beyond whatever features you find particularly useful and comfortable, here are some basic abilities that we think

every decent editor should have. If your editor fals short in any of these areas, then this may be the time to consider
moving on to amore advanced one.

Configurable. All aspects of the editor should be configurable to your preferences, including fonts, colors,
window sizes, and keystroke bindings (which keys perform what commands). Using only keystrokes for
common editing operationsis more efficient than mouse or menu-driven commands, because your hands
never leave the keyboard.

Extensible. An editor shouldn't be obsolete just because a new programming language comes out. It
should be able to integrate with whatever compiler environment you are using. Y ou should be able to "teach”
it the nuances of any new language or text format (XML, HTML verson 9, and so on).

Programmable. Y ou should be able to program the editor to perform complex, multistep tasks. Thiscan
be done with macros or with abuilt-in scripting programming language (Emacs uses avariant of Lisp, for
ingdance).

In addition, many editors support features that are specific to a particular programming language, such as.

Syntax highlighting

Auto-completion

Auto-indentation

Initial code or document boilerplate

Tie-into help sysems

IDE-like features (compile, debug, and so on)

A feature such as syntax highlighting may sound like afrivolous extra, but in redity it can be very useful and enhance

your productivity. Once you get used to seeing keywords appear in adifferent color or font, amistyped keyword
that doesn't gppear that way jumps out a you long before you fire up the compiler.

Having the ability to compile and navigate directly to errors within the editor environment isvery handy on big
projects. Emacsin particular is adept at this style of interaction.

Productivity

A surprising number of people we've met use the Windows notepad utility to edit their source code. Thisislike using
ateaspoon as a shovel—smply typing and using basic mouse-based cut and paste is not enough.

What sort of thingswill you need to do that can't be donein thisway?

Wéll, ther€'s cursor movement, to start with. Single keystrokes that move you in units of words, lines, blocks, or
functions are far more efficient than repeatedly typing akeystroke that moves you character by character or line by
line

Or suppose you are writing Java code. Y ou like to keep your import statements in aphabetical order, and someone
else has checked in afew filesthat don't adhere to this standard (this may sound extreme, but on alarge project it

can saveyou alot of time scanning through along list of import statements). Y ou'd like to go quickly through afew
filesand sort asmall section of them. In editors such asvi and Emacs you can do thiseasily (see Figure 3.1). Try that

In notepad.

Figure 3.1. Sorting linesin an editor

import java.util.Vector; emacs: M-xsort-lines import java.awt.®;
import java.util.S5tack; — . import jawva.net.URL;
import jawva.net.URL; - - import java.util.Stack;

import java.awt.®; vi: :. +31s00L import jawva.util.Vector;
HEHI S |

Some editors can help streamline common operations. For instance, when you create anew filein aparticular
language, the editor can supply atemplate for you. It might include:

Name of the class or modulefilled in (derived from the filename)

Y our name and/or copyright statements

Skeletons for constructsin that language (constructor and destructor declarations, for example)

Another useful feature is auto-indenting. Rather than having to indent manualy (by using space or tab), the editor
automaticaly indentsfor you at the appropriate time (after typing an open brace, for example). The nice part about
thisfeatureisthat you can use the editor to provide aconsistent indentation style for your project.[5]

[5] The Linux kernel is developed this way. Here you have geographically dispersed developers, many working on the same pieces of code. Thereisa
published list of settings (in this case, for Emacs) that describes the required indentation style.

Whereto Go from Here

Thissort of adviceis particularly hard to write because virtudly every reader isat adifferent level of comfort and
expertise with the editor(s) they are currently using. So, to summarize, and to provide some guidance on where to go
next, find yoursdlf in the left-hand column of the chart, and look at the right-hand column to see what we think you
should do.

If thissoundslikeyou... Then think about...

| use only basic features of many different editors. Pick apowerful editor and learn it well.

| have a favorite editor, but | don't use all of its features. Learn them. Cut down the number of keystrokes you need to
type.

| have a favorite editor and use it where possible. Try to expand and use it for more tasks than you do already.

| think you are nuts. Notepad is the best editor ever made. Aslong as you are happy and productive, go for it! But if you

find yourself subject to "editor envy," you may need to
reevaluate your position.

What Editors Are Available?

Having recommended that you master a decent editor, which one do we recommend? Well, were going to duck that
question; your choice of editor isapersona one (some would even say ardigiousone!). However, in Appendix A,
we list anumber of popular editors and where to get them.

Challenges

Some editors use full-blown languages for customization and scripting. Emacs, for example, usesLisp. As
one of the new languages you are going to learn this year, learn the language your editor uses. For anything
you find yoursdf doing repeatedly, develop a set of macros (or equivalent) to handleit.

Do you know everything your editor is capable of doing? Try to ssump your colleagues who use the same
editor. Try to accomplish any given editing task in asfew keystrokes as possible.

| | @ve RuBoard

| | @ve RuBoard

Sour ce Code Control

Progress, far from consisting in change, depends on retentiveness. Those who cannot remember the past are
condemned to repeat it.

Geor ge Santayana, Life of Reason

One of the important thingswe look for in auser interfaceisthe 'key—agingle button that forgives us our
mistakes. It's even better if the environment supports multiple levels of undo and redo, so you can go back and
recover from something that happened a couple of minutes ago. But what if the mistake happened last week, and
you've turned your computer on and off ten times since then? Well, that's one of the many benefits of using asource

[UNDO

code control system: it'sagiant |.U NDOJ key—a project-wide time machine that can return you to those halcyon days
of last week, when the code actualy compiled and ran.

Source code control systems, or the more widely scoped configuration management systems, keep track of every
change you make in your source code and documentation. The better ones can keep track of compiler and OS
versonsaswdl. With aproperly configured source code control system, you can always go back to a previous
version of your software.

But a source code control system (SCCSie]) doesfar more than undo mistakes. A good SCCSwill let you track
changes, answering questions such as. Who made changesin thisline of code? What's the difference between the
current verson and last week's? How many lines of code did we change in thisrelease? Which files get changed most
often? Thiskind of information isinvauable for bug-tracking, audit, performance, and quality purposes.

[6] We use the uppercase SCCS to refer to generic source code control systems. There is also a specific system called "sccs," originally released with
AT&T System V Unix.

An SCCSwill dsolet you identify releases of your software. Once identified, you will ways be able to go back and
regenerate the release, independent of changes that may have occurred later.

We often use an SCCS to manage branches in the development tree. For example, once you have released some
software, you'll normally want to continue developing for the next release. At the sametime, you'll need to dedl with
bugsin the current release, shipping fixed versonsto clients. Y ou'll want these bug fixes rolled into the next release (if
appropriate), but you don't want to ship code under development to clients. With an SCCS you can generate
branches in the devel opment tree each time you generate arelease. Y ou apply bug fixesto code in the branch, and
continue devel oping on the main trunk. Since the bug fixes may be relevant to the main trunk aswel, some systems
alow you to merge selected changes from the branch back into the main trunk automaticaly.

Source code control systems may keep thefilesthey maintain in acentral repository—agreat candidate for archiving.

Findly, some products may alow two or more usersto be working concurrently on the same set of files, even
making concurrent changesin the samefile. The system then manages the merging of these changes when thefilesare

sent back to the repository. Although seemingly risky, such systemswork well in practice on projects of al sizes.

Tip 23

Always Use Source Code Control

Always. Even if you are a Single-person team on aone-week project. Evenif it'sa"throw-away" prototype. Even if
the stuff you're working on isn't source code. Make sure that everything is under source code
control—documentation, phone number lists, memos to vendors, makefiles, build and rel ease procedures, that little
shell script that burnsthe CD master—everything. We routingly use source code control on just about everything we
type (including the text of thisbook). Even if we're not working on aproject, our day-to-day work issecured in a

repository.

Sour ce Code Control and Builds

Thereisatremendous hidden benefit in having an entire project under the umbrella of a source code control system:
you can have product buildsthat are automatic and repeatable.

The project build mechanism can pull the latest source out of the repogitory automaticaly. It can runin the middle of
the night after everyone's (hopefully) gone home. Y ou can run automatic regresson tests to ensure that the day's
coding didn't break anything. The automation of the build ensures cons stency—there are no manua procedures, and
you won't need devel opers remembering to copy code into some specid build area.

The build is repestable because you can dways rebuild the source asit existed on agiven date.

| | @ve RuBoard

| | @ve RuBoard

But My Team Isn't Using Sour ce Code Control

Shame on them! Sounds like an opportunity to do some evangdizing! However, while you wait for them to seethe
light, perhaps you should implement your own private source control. Use one of the fregly availabletoolswelistin
Appendix A, and make apoint of keeping your persona work safely tucked into arepository (aswell as doing
whatever your project requires). Although this may seem to be duplication of effort, we can pretty much guaranteeiit
will saveyou grief (and save your project money) thefirst time you need to answer questions such as"What did you
do to the xyz module?' and "What broke the build?" This approach may aso help convince your management that
source code control reglly works.

Don't forget that an SCCSis equaly applicable to the things you do outside of work.

| | @ve RuBoard

| | @ve RuBoard

Sour ce Code Control Products

Appendix A, gives URLsfor representative source code control systems, some commercial and othersfredly
available. And many more products are available—look for pointers to the configuration management FAQ.

Related sectionsinclude;

Orthogondity

The Power of Plain Text

It's All Writing

Challenges

Evenif you are not able to use an SCCS at work, install RCS or CVS on apersona system. Useit to
manage your pet projects, documents you write, and (possibly) configuration changes applied to the
computer system itsdlf.

Takealook at some of the Open Source projects for which publicly ble archives are available on the
Web (suchasMozilla[URL 51], KDE [URL 54], and the Gimp [URL 55]). How do you get updates of the
source? How do you make changes—does the project regulate access or arbitrate the inclusion of changes?

| | @ve RuBoard

| | @ve RuBoard

Debugging

It isa painful thing

To look at your own trouble and know

That you yourself and no one else has made it
Sophocles, Ajax

Theword bug has been used to describe an "object of terror” ever since the fourteenth century. Rear Admira Dr.
Grace Hopper, the inventor of COBOL, is credited with observing thefirst computer bug—literdly, amoth caught
inarelay in an early computer system. When asked to explain why the machine wasn't behaving asintended, a
technician reported that there was "abug in the system,” and dutifully taped it—wings and all—into the log book.

Regrettably, we dill have "bugs' in the system, dbeit not the flying kind. But the fourteenth century meaning—a
bogeyman—is perhaps even more gpplicable now than it was then. Software defects manifest themsalvesin avariety
of ways, from misunderstood requirementsto coding errors. Unfortunately, modern computer systems are till limited
to doing what you tell them to do, not necessarily what you want them to do.

No one writes perfect software, so it'sagiven that debugging will take up amgjor portion of your day. Let'slook at
some of theissuesinvolved in debugging and some generd Strategiesfor finding eusive bugs.

Psychology of Debugging

Debugging itsdlf isasendtive, emotiona subject for many developers. Instead of attacking it as a puzzle to be solved,
you may encounter denid, finger pointing, lame excuses, or just plain apathy.

Embrace thefact that debugging isjust problem solving, and attack it as such.

Having found someone el s&'s bug, you can spend time and energy laying blame on the filthy cul prit who created it. In
some workplacesthisis part of the culture, and may be cathartic. However, in the technicd arena, you want to
concentrate on fixing the problem, not the blame.

Tip24

Fix the Problem, Not the Blame

It doesn't redlly matter whether the bug is your fault or someone esg's. It istill your problem.

A Debugging Mindset

The easiest person to deceiveis one's self

Edward Bulwer-Lytton, The Disowned

Before you start debugging, it'simportant to adopt the right mindset. Y ou need to turn off many of the defensesyou
use each day to protect your ego, tune out any project pressures you may be under, and get yourself comfortable.
Aboveadl, remember thefird rule of debugging:

Tip 25

Don't Panic

It'seasy to get into apanic, especidly if you are facing adeadline, or have anervous boss or client breathing down
your neck while you are trying to find the cause of the bug. But it is very important to step back a pace, and actudly
think about what could be causing the symptomsthat you believe indicate a bug.

If your first reaction on witnessing abug or seeing abug report is"that'simpossible,” you are plainly wrong. Don't
waste asingle neuron on the train of thought that begins "but that can't happen” because quite clearly it can, and has.

Beware of myopiawhen debugging. Resist the urgeto fix just the symptoms you see: it ismore likely that the actua
fault may be severa steps removed from what you are observing, and may involve anumber of other related things.
Alwaystry to discover the root cause of aproblem, not just this particular appearance of it.

Whereto Start

Beforeyou start to look at the bug, make sure that you are working on code that compiled cleanly—without
warnings. We routinely set compiler warning levels ashigh as possible. It doesn't make sense to waste time trying to
find a problem that the compiler could find for you! We need to concentrate on the harder problems at hand.

When trying to solve any problem, you need to gather al the relevant data. Unfortunately, bug reporting isn't an exact
science. It's easy to be mided by coincidences, and you can't afford to waste time debugging coincidences. Y ou first
need to be accurate in your observations.

Accuracy in bug reportsisfurther diminished when they come through athird party—you may actualy need to watch
the user who reported the bug in action to get asufficient level of detall.

Andy once worked on alarge graphics application. Nearing relesse, the testers reported that the application crashed
every timethey painted a stroke with a particular brush. The programmer respons ble argued that there was nothing
wrong with it; he had tried painting with it, and it worked just fine. This dialog went back and forth for severd days,
with tempersrapidly risng.

Finally, we got them together in the same room. The tester selected the brush tool and painted astroke from the
upper right corner to the lower left corner. The application exploded. "Oh," said the programmer, inasmdl voice,
who then sheepishly admitted that he had made test strokes only from the lower |eft to the upper right, which did not
expose the bug.

There are two pointsto this story:

Y ou may need to interview the user who reported the bug in order to gather more data than you wereinitidly
given.

Artificial tests (such asthe programmer's single brush stroke from bottom to top) don't exercise enough of an
gpplication. Y ou must brutally test both boundary conditions and redlistic end-user usage patterns. Y ou need
to do this systematically (see Ruthless Tedting).

Debugging Strategies

Once you think you know what isgoing on, it'stimeto find out what the program thinksisgoing on.

Bug Reproduction

No, our bugs aren't realy multiplying (athough some of them are probably old enough to do it legdly).
Weé're talking about a different kind of reproduction.

The best way to start fixing abug isto makeit reproducible. After dl, if you can't reproduce it, how will
you know if it isever fixed?

But we want more than abug that can be reproduced by following some long series of steps; wewant a
bug that can be reproduced with a single command. It'salot harder to fix abug if you haveto go
through 15 stepsto get to the point where the bug shows up. Sometimes by forcing yourself to isolate
the circumstances that display the bug, you'll even gain aningght on how to fix it.

See Ubiquitos Automation, for other ideas aong these lines.

Visualize Your Data

Often, the easiest way to discern what a program is doing—or what it is going to do—isto get agood look at the
datait isoperating on. The smplest example of thisisastraightforward "variable name = datavaue' approach,
which may be implemented as printed text, or asfieldsin aGUI didog box or list.

But you can gain amuch deeper insight into your data by using a debugger that alows you to visualize your dataand
al of theinterrelationshipsthat exist. There are debuggers that can represent your dataasa 3D fly-over through a
virtud redity landscape, or asa3D waveform plot, or just as simple structura diagrams, as shownin Figure 3.2 on
the next page. Asyou single-step through your program, pictures like these can be worth much more than athousand
words, asthe bug you've been hunting suddenly jumps out &t you.

Figure 3.2. Sample debugger diagram of acircular linked list. The arrowsrepresent pointersto nodes.

1l: list

st +3
Ox804db40

L}
next
value = 85 || value = 86
self = 0x504db40 gelf = 0x804db50
next = 0x804db50 - 4| next = 0x804db40

Evenif your debugger has limited support for visudizing data, you can il do it yoursef—either by hand, with paper
and pencil, or with external plotting programs.

The DDD debugger has some visudization capabilities, and isfredy avallable (see[URL 19]). It isinteresting to note
that DDD works with multiple languages, including Ada, C, C++, Fortran, Java, Modula, Pascd, Perl, and Python

(clearly an orthogona design).

Tracing

Debuggers generdly focus on the state of the program now. Sometimes you need more—you need to watch the
state of aprogram or adata structure over time. Seeing astack trace can only tell you how you got here directly. It
can't tell you what you were doing prior to thiscall chain, especialy in event-based systems.

Tracing statements are those little diagnostic messages you print to the screen or to afile that say things such as "got
here' and "vaue of x = 2." It'sa primitive technique compared with IDE-style debuggers, but it is peculiarly effective
at diagnosing severa classes of errorsthat debuggers can't. Tracing isinvauablein any sysem wheretimeitsdlf isa
factor: concurrent processes, redl-time systems, and event-based applications.

Y ou can use tracing statementsto "drill down" into the code. That is, you can add tracing statements as you descend
thecal tree.

Trace messages should bein aregular, consstent format; you may want to parse them automatically. For instance, if
you needed to track down aresource leak (such as unbaanced file opens/closes), you could trace each open and
each closeinalog file. By processng the log file with Perl, you could eesily identify where the offending open was
occurring.

Corrupt Variables? Check Thar
Neighborhood

Sometimes you'll examine avariable, expecting to seeasmall integer vaue, and instead get something
like Ox6e69614d. Before you roll up your deeves for some serious debugging, have aquick look at the
memory around this corrupted variable. Often it will give you aclue. In our case, examining the
surrounding memory as characters shows us

20333231 6e69614d 2c¢745320 746f 4e0a
123 Mai n St, \nNot
2c6e776f 2058580a 31323433 00000a33
own, \nXx X 3421 3\n\0\0

L ooks like someone sprayed a street address over our counter. Now we know where to 1ook.

Rubber Ducking

A very smple but particularly useful technique for finding the cause of aproblem issmply to explainit to someone
else. The other person should look over your shoulder at the screen, and nod his or her head congtantly (likea
rubber duck bobbing up and down in abathtub). They do not need to say aword; the smple act of explaining, step

by step, what the code is supposed to do often causes the problem to legp off the screen and announce itself.[7]

[7] Why "rubber ducking"? While an undergraduate at Imperial College in London, Dave did alot of work with a research assistant named Greg Pugh,
one of the best developers Dave has known. For several months Greg carried around a small yellow rubber duck, which he'd place on his terminal while
coding. It was awhile before Dave had the courage to ask....

It sounds smple, but in explaining the problem to another person you must explicitly state things that you may take for
granted when going through the code yoursdlf. By having to verbdize some of these assumptions, you may suddenly
gan new indght into the problem.

Process of Elimination

In most projects, the code you are debugging may be amixture of gpplication code written by you and otherson
your project team, third-party products (database, connectivity, graphical libraries, specidized communications or
agorithms, and so on) and the platform environment (operating system, system libraries, and compilers).

It is possible that a bug exigtsin the OS, the compiler, or athird-party product—but this should not be your first
thought. It ismuch morelikdy that the bug existsin the gpplication code under development. It isgenerdly more
profitable to assume that the application codeisincorrectly caling into alibrary than to assume that the library itsdlf is
broken. Even if the problem does liewith athird party, you'll till haveto diminate your code before submitting the

bug report.

We worked on a project where a senior engineer was convinced that the select system call was broken on Solaris.
No amount of persuasion or logic could change his mind (the fact that every other networking application on the box
worked finewasirrelevant). He spent weeks writing work-arounds, which, for some odd reason, didn't seem to fix
the problem. When finally forced to sit down and read the documentation on select, he discovered the problem and
corrected it in amatter of minutes. We now use the phrase "sdlect is broken™ as agentle reminder whenever one of
us starts blaming the system for afault that islikely to be our own.

Tip 26

"sdect" |lan't Broken

Remember, if you see hoof prints, think horses—not zebras. The OSis probably not broken. And the databaseis
probably just fine.

If you "changed only onething" and the system stopped working, that one thing waslikely to be respongble, directly
or indirectly, no matter how farfetched it ssems. Sometimes the thing that changed is outside of your control: new
versions of the OS, compiler, database, or other third-party software can wreak havoc with previoudy correct code.
New bugs might show up. Bugs for which you had awork-around get fixed, breaking the work-around. APIs
change, functiondity changes; in short, it'sawhole new ball game, and you must retest the system under these new
conditions. So keep aclose eye on the schedule when considering an upgrade; you may want to wait until after the
next release.

If, however, you have no obvious place to start looking, you can dways rely on agood old-fashioned binary search.

Seeif the symptoms are present at either of two far away spotsin the code. Then look in the middle. If the problem
IS present, then the bug lies between the start and the middle point; otherwisg, it is between the middle point and the
end. Y ou can continue in this fashion until you narrow down the spot sufficiently to identify the problem.

The Element of Surprise

When you find yoursdlf surprised by abug (perhaps even muttering "that'simpossible’ under your bresth where we
can't hear you), you must reevauate truths you hold dear. In that linked list routine—the one you knew was
bulletproof and couldn't possibly be the cause of this bug—did you test all the boundary conditions? That other piece
of code you've been using for years—it couldn't possibly sill haveabuginit. Could it?

Of courseit can. The amount of surprise you fed when something goeswrong is directly proportiona to the amount
of trugt and faith you have in the code being run. That'swhy, when faced with a"surprising” failure, you must redize
that one or more of your assumptionsiswrong. Don't gloss over aroutine or piece of code involved in the bug
because you "know" it works. Proveit. Proveit in this context, with this data, with these boundary conditions.

Tip 27

Don't Assume It—Prove It

When you come across asurprise bug, beyond merdy fixing it, you need to determine why thisfailure wasn't caught

earlier. Consder whether you need to amend the unit or other tests so that they would have caught it.

Also, if the bug isthe result of bad data that was propagated through a couple of levels before causing the explosion,
seeif better parameter checking in those routineswould have isolated it earlier (see the discussions on crashing early
and assertions on pages 120 and 122, respectively).

Whileyou're at it, are there any other placesin the code that may be susceptible to this same bug? Now isthe timeto
find and fix them. Make sure that whatever happened, you'll know if it happens again.

If it took along timeto fix this bug, ask yoursdlf why. Isthere anything you can do to makefixing thisbug easier the
next time around? Perhaps you could build in better testing hooks, or write alog file andyzer.

Findly, if the bug isthe result of someone's wrong assumption, discuss the problem with the whole team: if one
person misunderstands, then it's possible many people do.

Do dl this, and hopefully you won't be surprised next time.

Debugging Checklist

Isthe problem being reported adirect result of the underlying bug, or merely asymptom?

Isthe bug really in the compiler?1sit in the OS? Or isit in your code?

If you explained this problem in detail to acoworker, what would you say?

If the suspect code passesits unit tests, are the tests complete enough? What happensif you run the unit test
with this data?

Do the conditions that caused this bug exist anywhere e sein the system?

Related sectionsinclude:

Assartive Programming

Programming by Coincidence

Ubiquitous Automation

Ruthless Tedting

Challenges

Debugging is chdlenge enough.

| | @ve RuBoard

| | @ve RuBoard

Text Manipulation

Pragmatic Programmers mani pul ate text the same way woodworkers shape wood. In previous sections we discussed
some specific tools—shells, editors, debuggers—that we use. These are similar to awood-worker's chisels, saws,
and planes—tools specidized to do one or two jobs well. However, every now and then we need to perform some
transformation not readily handled by the basic tool set. We need a generd-purpose text manipulation tool.

Text manipulation languages are to programming what routersig] are to woodworking. They are noisy, messy, and
somewhat brute force. Make mistakes with them, and entire pieces can be ruined. Some people swear they have no
place in the toolbox. But in the right hands, both routers and text manipul ation languages can be incredibly powerful
and versatile. Y ou can quickly trim something into shape, make joints, and carve. Used properly, these tools have
surprising finesse and subtlety. But they take time to master.

[8] Here router means the tool that spins cutting blades very, very fast, not a device for interconnecting networks.

Thereisagrowing number of good text manipulation languages. Unix developers often like to use the power of their
command shells, augmented with tools such as awk and sed. People who prefer amore structured tool like the
object-oriented nature of Python [URL 9]. Some people use Tcl [URL 23] astheir tool of choice. We happen to
prefer Perl [URL 8] for hacking out short scripts.

These languages are important enabling technologies. Using them, you can quickly hack up utilities and prototype
ideas—jobsthat might take five or ten times aslong using conventiona languages. And that multiplying factor is
crucialy important to the kind of experimenting that we do. Spending 30 minutes trying out acrazy ideaisawholelot
better that spending five hours. Spending aday automating important components of a project is acceptable;
spending aweek might not be. In their book The Practice of Programming [KP99], Kernighan and Pike built the
same program in five different languages. The Perl version wasthe shortest (17 lines, compared with C's 150). With
Perl you can manipulate text, interact with programs, talk over networks, drive Web pages, perform arbitrary
precison arithmetic, and write programs that look like Snoopy swearing.

Tip 28

Learn aText Manipulaion Language

To show the wide-ranging applicability of text manipulation languages, heré's asample of some gpplicationsweve
developed over the last few years.

Database schema maintenance. A set of Perl scriptstook aplain text file containing a database schema
definition and from it generated:

(0]

The SQL statementsto create the database

Fat datafilesto populate adata dictionary

C code libraries to access the database

Scriptsto check database integrity

Web pages containing schema descriptions and diagrams

An XML version of the schema

Java property access. Itisgood OO programming style to restrict access to an object's properties,
forcing external classesto get and set them viamethods. However, in the common case where aproperty is
represented ingde the class by asmple member variable, creating a get and set method for each variableis
tedious and mechanica. We have a Perl script that modifies the source files and inserts the correct method
definitionsfor dl appropriately flagged variables.

Test data generation. We had tens of thousands of records of test data, spread over severd different files
and formats, that needed to be knitted together and converted into aform suitable for loading into a relational
database. Perl did it in acouple of hours (and in the process found a couple of consistency errorsin the
origind data).

Book writing. Wethink it isimportant that any code presented in abook should have been tested firgt.
Most of the codein this book has been. However, using the DRY principle (see The Evilsof Duplication) we
didn't want to copy and paste lines of code from the tested programsinto the book. That would have meant
that the code was duplicated, virtually guaranteeing that we'd forget to update an example when the
corresponding program was changed. For some examples, we aso didn't want to bore you with al the
framework code needed to make our example compile and run. We turned to Perl. A relaively smple script
Isinvoked when we format the book—it extracts a named segment of asource file, does syntax highlighting,
and converts the result into the typesetting language we use.

C to Object Pascal interface. A client had ateam of developerswriting Object Pasca on PCs. Their
code needed to interface to abody of code written in C. We developed a short Perl script that parsed the C
header files, extracting the definitions of al exported functions and the data structures they used. Wethen
generated Object Pascal units with Pascal recordsfor al the C structures, and imported procedure

definitionsfor al the C functions. This generation process became part of the build, so that whenever the C
header changed, anew Object Pasca unit would be constructed automatically.

Generating Web documentation. Many project teams are publishing their documentation to interna Web
stes. We have written many Perl programs that analyze database schemas, C or C++ source files, makefiles,
and other project sourcesto produce the required HTML documentation. We also use Perl to wrap the
documents with standard headers and footers, and to transfer them to the Web site.

We use text manipulation languages dmost every day. Many of theideasin thisbook can be implemented more
smply in them than in any other language of which were aware. These languages make it easy to write code
generators, which well look at next.

Related sectionsinclude:

TheEvilsof Duplication

| | @ve RuBoard

| | @ve RuBoard

Exercises

| | @ve RuBoard

11.
Y our C program uses an enumerated typeto
represent one of 100 states. You'd liketo be able to
print out the state as a string (as opposed to a
number) for debugging purposes. Write a script that
reads from standard input afile containing

nane
state_a
state_b

Produce thefile name.h, which contains

extern const char* NAME_nanes[];
t ypedef enum {

state_a,

state_b,

} NAIVE; .
and thefile name.c, which contains

const char* NAME nanes[] = {
"state_a",
"state_b",

Halfway through writing this book, we redized that
we hadn't put the use gtrict directive into many of our
Perl examples. Write ascript that goes through the
plfliesinadirectory and addsause srict at theend
of theinitid comment block to dl fliesthat don't
aready have one. Remember to keep a backup of al
fliesyou

| | @ve RuBoard

Code Generators

When woodworkers are faced with the task of producing the same thing over and over, they cheat. They build
themselvesajig or atemplate. If they get thejig right once, they can reproduce a piece of work time after time. The
jig takes away complexity and reduces the chances of making mistakes, leaving the craftsman free to concentrate on

qudlity.

As programmers, we often find ourselvesin asmilar position. We need to achieve the same functionaity, but in
different contexts. We need to repeat information in different places. Sometimes we just need to protect ourselves
from carpd tunnd syndrome by cutting down on repetitive typing.

In the same way awoodworker investsthe timein ajig, aprogrammer can build a code generator. Once buiilt, it can
be used throughout the life of the project at virtualy no cost.

Tip 29

Write Code That Writes Code

There are two main types of code generators:

1.
Passive code generators are run once to produce aresult. From that point forward, the result becomes
freestanding—it is divorced from the code generator. The wizards discussed in Evil Wizards, dong with
some CASE tools, are examples of passive code generators.

2.
Active code generators are used each time their results are required. The result is a throw-away—it can
always be reproduced by the code generator. Often, active code generators read some form of script or
control fileto produce their results.

Passive Code Generators

Passive code generators save typing. They are basically parameterized templates, generating agiven output from a
st of inputs. Once the result is produced, it becomes afull-fledged source filein the project; it will be edited,
compiled, and placed under source control just like any other file. Itsoriginswill be forgotten.

Passive code generators have many uses.

Creating new sourcefiles. A passive code generator can produce templates, source code control
directives, copyright notices, and standard comment blocks for each new filein a project. We have our
editors set up to do thiswhenever we create anew file: edit anew Java program, and the new editor buffer
will automatically contain acomment block, package directive, and the outline class declaration, areedy filled
in.

Performing one-off conversions among programming languages. We started writing this book using the
troff system, but we switched to LaTeXafter 15 sections had been completed. We wrote a code generator
that read the troff source and converted it to LaTeX. It was about 90% accurate; the rest we did by hand.
Thisisan interesting feature of passve code generators. they don't have to be totally accurate. Y ou get to
choose how much effort you put into the generator, compared with the energy you spend fixing up its output.

Producing lookup tables and other resources that are expensive to compute at runtime. Instead of
caculating trigonometric functions, many early graphics systems used precomputed tables of sneand cosine
values. Typicaly, these tables were produced by a passive code generator and then copied into the source.

Active Code Generators

While passive code generators are Smply aconvenience, their active cousins are anecessity if you want to follow the
DRY principle. With an active code generator, you can take asingle representation of some piece of knowledge and
convert it into dl the formsyour gpplication needs. Thisis not duplication, because the derived forms are disposable,
and are generated as needed by the code generator (hence the word active).

Whenever you find yourself trying to get two disparate environments to work together, you should consider using
active code generators.

Perhaps you're devel oping a database application. Here, you're dealing with two environments—the database and
the programming language you are using to accessit. Y ou have a schema, and you need to define low-level structures
mirroring the layout of certain database tables. Y ou could just code these directly, but thisviolatesthe DRY principle
knowledge of the schemawould then be expressed in two places. When the schema changes, you need to remember
to change the corresponding code. If acolumn is removed from atable, but the code base is not changed, you might
not even get acompilation error. Thefirgt you'll know about it iswhen your tests start failing (or when the user cals).

An dternativeisto use an active code generator—take the schema and use it to generate the source code for the
gructures, as shown in Figure 3.3. Now, whenever the schema changes, the code used to accessit also changes,
automaticaly. If acolumn isremoved, then its corresponding field in the structure will disappear, and any higher-level
code that usesthat column will fail to compile. Y ou've caught the error a compiletime, not in production. Of course,
this scheme works only if you make the code generation part of the build processitsalf.[9]

[9] Just how do you go about building code from a database schema? There are several ways. If the schemais held in aflat file (for example, as create

table statements), then arelatively simple script can parse it and generate the source. Alternatively, if you use atool to create the schema directly in

the database, then you should be able to extract the information you need directly from the database's data dictionary. Perl provides libraries that give
you access to most major databases.

Figure 3.3. Active code generator creates code from a database schema

struct EmployeeRow

Schema P
e table employee active struct EmploverRow
e table employer —> code —_— pLOY

s table benefit generator =
struct BenefitRow

Another example of melding environments using code generators happens when different programming languages are
used in the same application. In order to communicate, each code base will need some information in common—data
sructures, message formats, and field names, for example. Rather than duplicate thisinformation, use acode
generator. Sometimes you can parse the information out of the source files of one language and use it to generate
code in asecond language. Often, though, it issmpler to expressit inasmpler, language-neutra representation and
generate the code for both languages, as shown in Figure 3.4 on thefollowing page. Also see the answer to Exercise
13 on page 286 for an example of how to separate the parsing of the flat file representation from code generation.

Figure 3.4. Generating code from a language-neutral representation. In theinput file, lines starting with

‘M’ flag the start of a message definition, 'F' linesdefinefields, and 'E' isthe end of the message.
Add a product
to the ‘on-order’ list
M AddProduct
F id int
F name char[30]
F order_code int
E

C ey,
ﬁzf'j‘m etz
. <

A% Add a product */ { Add a product }

A% to the 'en-order' list */ { to the "on-order’™ list }

typedef struct | AddPFroductMsg = packed record
int id; id: LongInt;
char namel[30]; name : array[0..29] of char;
int order_code; order_code: Longlnt;

} AddProductMsg; and ;

Code Generators Needn't Be Complex

All thistalk of active thisand passive that may leave you with theimpression that code generators are complex
beasts. They needn't be. Normally the most complex part is the parser, which andyzesthe input file. Keep the input
format smple, and the code generator becomes simple. Have alook at the answer to Exercise 13 (page 286): the
actual code generation isbasicdly print statements.

Code Generators Needn't Generate Code
Although many of the examplesin this section show code generators that produce program source, this needn't

always bethe case. Y ou can use code generators to write just about any output: HTML, XML, plain text—any text
that might be an input somewhere sein your project.

Related sectionsinclude:

TheEvilsof Duplicaion

The Power of Plain Text

Evil Wizards

Ubiguitous Automation

Exercises

| | @ve RuBoard

13.
Write a code generator that takestheinput filein
Figure 3.4, and generates output in two languages of
your choice. Try to make it easy to add new languages

| | @ve RuBoard

Chapter 4. Pragmatic Paranoia

Tip30

Y ou Can't Write Pafect Software

Did that hurt? It shouldn't. Accept it as an axiom of life. Embraceit. Celebrate it. Because perfect software doesn't
exig. No onein the brief history of computing has ever written a piece of perfect software. It'sunlikely that you'll be
thefirst. And unless you accept thisas afact, you'll end up wasting time and energy chasing an impossible dream.

S0, given this depressing redlity, how does a Pragmatic Programmer turn it into an advantage? That's the topic of this
chapter.

Everyone knows that they persondly are the only good driver on Earth. The rest of the world is out there to get them,
blowing through stop signs, weaving between lanes, not indicating turns, talking on the telephone, reading the paper,
and just generdly not living up to our standards. So we drive defensively. Welook out for trouble before it happens,
anticipate the unexpected, and never put oursaves into a position from which we can't extricate ourselves.

The andogy with coding is pretty obvious. We are congtantly interfacing with other peopl€'s code—code that might
not live up to our high standards—and dealing with inputs that may or may not be vaid. So we are taught to code
defensively. If there's any doubt, we vaidate al information were given. We use assertions to detect bad data. We
check for consistency, put constraints on database columns, and generaly fedl pretty good about ourselves.

But Pragmatic Programmers take this a step further. They don't trust themselves, either. Knowing that no one
writes perfect code, including themsalves, Pragmatic Programmers code in defenses againgt their own mistakes. We
describe the first defensve measurein Design by Contract: clients and suppliers must agree on rights and
responghilities.

In Dead Programs Tell No Lies, we want to ensure that we do no damage while we're working the bugs out. So
wetry to check things often and terminate the program if things go awry.

Assertive Programming describes an easy method of checking aong the way—write code that actively verifies
your assumptions.

Exceptions, like any other technique, can cause more harm than good if not used properly. Well discusstheissuesin
When to Use Exceptions.

Asyour programs get more dynamic, you'l find yoursdlf juggling system resources—memory, files, devices, and the

like. In How to Balance Resources, well suggest ways of ensuring that you don't drop any of the balls.

Inaworld of imperfect systems, ridiculous time scales, laughable tools, and impossible requirements, let'splay it safe.

When everybody actually is out to get you, paranoia isjust good thinking.

Woody Alien

| | @ve RuBoard

| | @ve RuBoard

Design by Contract

Nothing astonishes men so much as common sense and plain dealing.
Ralph Waldo Emerson, Essays

Dedling with computer systemsis hard. Dedling with people is even harder. But as a species, we've had longer to
figure out issues of human interactions. Some of the solutions we've come up with during the last few millennia.can be
applied to writing software aswell. One of the best solutionsfor ensuring plain deding isthe contract.

A contract defines your rights and responsibilities, aswell asthose of the other party. In addition, thereisan
agreement concerning repercussionsif either party falsto abide by the contract.

Maybe you have an employment contract that specifies the hours you'll work and the rules of conduct you must
follow. In return, the company paysyou asdary and other perks. Each party meetsits obligations and everyone
benefits.

It's an idea used the world over—both formally and informally—to help humansinteract. Can we use the same
concept to help software modulesinteract? The answer is"yes."

DBC

Bertrand Meyer [M ey97b] developed the concept of Design by Contract for thelanguage Eiffdl.[1] Itisasmpleyet
powerful technique that focuses on documenting (and agreeing to) the rights and responsibilities of software modules
to ensure program correctness. What is a correct program? One that does no more and no lessthan it claimsto do.
Documenting and verifying that claim isthe heart of Design by Contract (DBC, for short).

[1] Based in part on earlier work by Dijkstra, Floyd, Hoare, Wirth, and others. For more information on Eiffel itself, see [URL 10] and [URL 11].

Every function and method in a software system does something. Before it startsthat something, the routine may
have some expectation of the state of the world, and it may be able to make a statement about the state of the world
when it concludes. Meyer describes these expectations and clams asfollows:

Preconditions. What must betruein order for the routine to be caled; the routine's requirements. A routine
should never get caled when its preconditions would be violated. It isthe caller's responsibility to pass good
data (see the box on page 115).

Postconditions. What the routine is guaranteed to do; the tate of the world when the routineisdone. The
fact that the routine has a postcondition impliesthat it will conclude: infinite loops aren't alowed.

Classinvariants. A classensuresthat this condition is awaystrue from the perspective of acaler. During
interna processing of aroutine, theinvariant may not hold, but by the time the routine exits and control
returnsto the cdler, the invariant must be true. (Note that a class cannot give unrestricted write-access to any
datamember that participatesin theinvariant.)

Let'slook at the contract for aroutine that inserts adata value into aunique, ordered list. IniContract, a
preprocessor for Javaavailable from [URL 17], you'd specify it as

/**
* @nvariant forall Node n in elements()
* n.prev() != nul
* implies
* n. val ue(). conpare To(n.prev().value()) >0

*/
public class dbc_list {

/**
* @re contai ns(aNode) == fal se
* @ost contains(aNode) == true

*/
public void insertNode(final Node aNode) ({
...

Here we are saying that nodesin thislist must dways beinincreasing order. When you insert anew node, it can't
exis dready, and we guarantee that the node will be found after you have inserted it.

Y ou write these preconditions, postconditions, and invariantsin the target programming language, perhaps with some
extensions. For example, iContract provides predicate logic operators—fordl, exists, and implies—in addition to
normal Java constructs. Y our assertions can query the state of any object that the method can access, but be sure
that the query isfree from any side effects (see page 124).

DBC and Constant Parameters

Often, a postcondition will use parameters passed into a method to verify correct behavior. But if the
routine is allowed to change the parameter that's passed in, you might be able to circumvent the
contract. Eiffel doesn't alow thisto happen, but Java does. Here, we use the Java keyword final to
indicate our intentions that the parameter shouldn't be changed within the method. Thisian't

fool proof—subclasses are free to redeclare the parameter as non-find. Alternatively, you can use the

iContract syntax variable@pre to get the origina vaue of the variable asit existed on entry to the
method.

The contract between aroutine and any potentid caller can thus be read as

If all the routine's preconditions are met by the caller, the routine shall guarantee that all postconditions and
invariants will be true when it compl etes.

If either party failsto live up to the terms of the contract, then aremedy (which was previoudy agreed to) is
invoked—an exception israised, or the program terminates, for instance. Whatever happens, make no mistake that
falureto live up to the contract isabug. It isnot something that should ever happen, which iswhy preconditions
should not be used to perform things such as user-input validation.

Tip 31

Design with Contracts

In Orthogondity,, we recommended writing "shy" code. Here, the emphasisison "lazy" code: be strict in what you

will accept before you begin, and promise aslittle as possible in return. Remember, if your contract indicates that
you'll accept anything and promise the world in return, then you've got alot of code to write!

Inheritance and polymorphism are the cornerstones of object-oriented languages and an areawhere contracts can
redlly shine. Suppose you are using inheritance to create an "is-a-kind-of" relationship, where one class "is-a-kind-of
another class. Y ou probably want to adhere to the Liskov Substitution Principle [Lis38]:

Subclasses must be usable through the base class interface without the need for the user to know the
difference.

In other words, you want to make sure that the new subtype you have created redly "is-a-kind-of" the base
type—that it supports the same methods, and that the methods have the same meaning. We can do thiswith
contracts. We need to specify a contract only once, in the base class, to have it applied to every future subclass
automatically. A subclass may, optiondly, accept awider range of input, or make stronger guarantees. But it must
accept at least as much, and guarantee as much, asits parent.

For example, consider the Java base class java.awt. Component. Y ou can treat any visual component in AWT or
Swing as a Component, without knowing that the actual subclassis abutton, acanvas, amenu, or whatever. Each
individual component can provide additiond, specific functionality, but it hasto provide at |east the basic capabilities
defined by Component. But there's nothing to prevent you from creating a subtype of Component that provides
correctly named methods that do the wrong thing. Y ou can eadly create a paint method that doesn't paint, or a
setFont method that doesn't set the font. AWT doesn't have contracts to catch the fact that you didn't live up to the
agreemen.

Without a contract, al the compiler can do is ensure that a subclass conformsto a particular method signature. But if
we put a base class contract in place, we can now ensure that any future subclass can't alter the meanings of our
methods. For instance, you might want to establish a contract for setFont such as the following, which ensures that
thefont you set isthe font you get:

/**

* @re f !'= null

* @ost getFont() ==

*/

public void setFont(final Font f) {
...

I mplementing DBC

The greatest benefit of usng DBC may be that it forces the issue of requirements and guaranteesto the forefront.
Simply enumerating at design time what the input domain rangeis, what the boundary conditions are, and what the
routine promises to deliver—or, more importantly, what it doesn't promiseto deliver—isahuge legp forward in
writing better software. By not stating these things, you are back to programming by coincidence, whichiswhere
many projects sart, finish, and fail.

In languages that do not support DBC in the code, this might be asfar asyou can go—and that's not too bad. DBC
is, after dl, a design technique. Even without automatic checking, you can put the contract in the code as comments
and il get avery red benefit. If nothing else, the commented contracts give you a place to start [ooking when
trouble strikes.

Assertions

While documenting these assumptionsisagreat Sart, you can get much greater benefit by having the compiler check
your contract for you. Y ou can partialy emulate thisin some languages by using assertions (see Assrtive
Programming). Why only partialy? Can't you use assertions to do everything DBC can do?

Unfortunately, the answer isno. To begin with, there is no support for propageting assertions down an inheritance
hierarchy. Thismeansthat if you override a base class method that has a contract, the assertions that implement that
contract will not be called correctly (unless you duplicate them manudly in the new code). Y ou must remember to
cdl theclassinvariant (and al base classinvariants) manudly before you exit every method. The basic problem isthat
the contract is not autometically enforced.

Also, thereisno built-in concept of "old" values; that is, values asthey existed at the entry to amethod. If you're
using assertions to enforce contracts, you must add code to the precondition to save any information you'll want to
usein the postcondition. Compare this with iContract, where the postcondition can just reference " Variable@pre,"
or with Eiffd, which supports "old expression.”

Findly, the runtime system and libraries are not designed to support contracts, so these cdls are not checked. Thisis
abig loss, becauseit is often at the boundary between your code and the librariesit uses that the most problems are
detected (see Dead Programs Tell No Lies for amore detailed discussion).

L anguage Support

Languages that feature built-in support of DBC (such as Eiffel and Sather [URL 12]) check pre- and postconditions
automatically in the compiler and runtime system. Y ou get the greatest benefit in this case because all of the code
base (libraries, too) must honor their contracts.

But what about more popular languages such as C, C++, and Java? For these languages, there are preprocessors

that process contracts embedded in the original source code as specia comments. The preprocessor expands these
comments to code that verifies the assartions.

For C and C++, you may want to investigate Nana[URL 18]. Nanadoesn't handle inheritance, but it does usethe
debugger a runtime to monitor assartionsin anove way.

For Java, thereisiContract [URL 17]. It takes comments (in JavaDoc form) and generates a new source file with the
assrtion logic included.

Preprocessors aren't as good as a built-in facility. They can be messy to integrate into your project, and other
libraries you use won't have contracts. But they can till be very hel pful; when a problem is discovered this
way—especidly onethat you would never have found—it'salmost like magic.

DBC and Crashing Early

DBC fitsin nicely with our concept of crashing early (see Dead Programs Tell No Lies). Suppose you have amethod
that calculates square roots (such asin the Eiffd classDOUBLE). It needs a precondition that restricts the domain to
positive numbers. An Eiffd precondition is declared with the keyword require, and a postcondition is declared with
ensure, o you could write

sqrt: DOUBLE is
-- Square root routine
require
sqrt_arg _nust _be_positive: Current >= 0;

--- calcul ate square root here

ensure
((Result*Result) - Current).abs <= epsilon*Current. abs;
-- Result should be within error tol erance

end;

Who'sresponsible?

Who isrepondible for cheeking the precondition, the caller or the routine being called? when
implemented as part of the language, the answer is neither: the routine but before the routine itsdlf is
entered. Thusif thereisany explicit checking of parametersto be done, it must be performed by the
caller,because the routine itsalf will never see parametersthat violate its precondition. (For languages
without built-in support, you would need to bracket the called routine with a preamble and/or
postamble that checks these assertions.)

Consder aprogram that reads a number from the console, calculate its square root (by calling sgrt), and
prints the result. The sgrt function has a precondition—its argument must not be negative. If the user
enters a negative number at the console, it isup to the calling code to ensure that it never gets passed to
grt. Thiscalling code has many options: it could terminate, it could issue awarning and read another
number, or it could make the number postive and append an "i" to the result returned by sgrt. Whater its
choice, thisisdefinitely not sgrt's problem.

By expressing the domain of the square root function in the precondition of the sgrt routine, you shift the
burden of correctnessto the call—where it belongs. you can then design the sgrt routine securein the
knowledgeitsinput will bein range.

If your agorithm for calculating the square root fails (or isn't within the specified error tolerance), you get an error
message and a stack trace to show you the cal chain.

If you pass sgrt anegetive parameter, the Eiffd runtime printsthe error "sgrt_arg must_be postive," dong with a
stack trace. Thisis better than the alternative in languages such as Java, C, and C++, where passing a negative
number to sort returns the special value NaN (Not a Number). It may be some time later in the program that you
attempt to do some math on NaN, with surprising results.

It's much easier to find and diagnose the problem by crashing early, at the site of the problem.

Other Uses of Invariants

So far we have discussed pre- and postconditions that apply to individual methods and invariants that apply to all
methods within aclass, but there are other useful waysto useinvariants.

Loop Invariants

Getting the boundary conditions right on anontrMal loop can be problematic. Loops are subject to the banana
problem (I know how to spell "banana,” but | don't know when to stop), fencepost errors (not knowing whether to
count the fenceposts or the spaces between them), and the ubiquitous "off by one" error [URL 52].

Invariants can help in these Stuations: aloop invariant isastatement of the eventua god of aloop, but is generalized

sothat it isaso vaid before the loop executes and on each iteration through the loop. Y ou can think of it asakind of
miniature contract. The classc exampleisaroutine that finds the maximum vauein an array.

int m=arr[0]; // exanple assunes arr.length > 0
int i =1;

// Loop invariant: m= max(arr[0:i-1])
while (i < arr.length) {

m= Math.max(m arr[i]);

i =i + 1

}

(arr[m:n] isanotationa convenience meaning adice of the array fromindex mto n.) Theinvariant must betrue
before the loop runs, and the body of the loop must ensure that it remains true as the loop executes. In thisway we
know that the invariant aso holds when the loop terminates, and therefore that our result isvalid. Loop invariants can
be coded explicitly as assertions, but they are aso useful as design and documentation tools.

Semantic | nvariants

Y ou can use semantic invariants to expressinviolate requirements, akind of "philosophical contract.”

We once wrote a debit card transaction switch. A mgjor requirement was that the user of a debit card should never
have the same transaction gpplied to their account twice. In other words, no matter what sort of failure mode might
happen, the error should be on the side of not processing atransaction rather than processing a duplicate transaction.

Thissmplelaw, driven directly from the requirements, proved to be very helpful in sorting out complex error
recovery scenarios, and guided the detailed design and implementation in many aress.

Be sure not to confuse requirements that are fixed, inviolate laws with those that are merely policiesthat might change
with anew management regime. That'swhy we use the term semantic invariants—it must be centra to the very
meaning of athing, and not subject to the whims of policy (which iswhat more dynamic businessrulesarefor).

When you find arequirement that quaifies, make sureit becomes awell-known part of whatever documentation you
are producing— whether it isabulleted list in the requirements document that gets signed in triplicate or just abig
note on the common whiteboard that everyone sees. Try to sate it clearly and unambiguoudy. For example, inthe
debit card example, we might write

ERR IN FAVOR OF THE CONSUMER,

Thisisaclear, concise, unambiguous statement that's applicable in many different areas of the system. Itisour
contract with al users of the system, our guarantee of behavior.

Dynamic Contracts and Agents

Until now, we have talked about contracts asfixed, immutable specifications. But in the landscape of autonomous

agents, this doesn't need to be the case. By the definition of "autonomous,” agents are free to reject requeststhat
they do not want to honor. They are free to renegotiate the contract—"| can't provide that, but if you give methis,
then | might provide something else.”

Certainly any system that relies on agent technology has a critical dependence on contractua arrangements—even if
they are dynamicaly generated.

Imagine: with enough components and agents that can negotiate their own contracts among themsdavesto achieve a
god, we might just solve the software productivity criss by letting software solveit for us.

But if we can't use contracts by hand, we won't be able to use them automatically. So next time you design a piece of
software, design its contract aswell.

Related sectionsinclude:

Orthogondity

Dead Prograns Tell No Lies

Assartive Programming

How to Balance Resources

Decoupling and the Law of Demeter

Tempora Coupling

Programming by Coincidence

Code That's Easy to Test

Pragmétic Teams

Challenges

Pointsto ponder: If DBC is so powerful, why isn't it used morewidely? Isit hard to come up with the
contract? Does it make you think about issues you'd rather ignore for now? Does it force you to THINK!?
Clearly, thisisadangeroustool!

Exercises

14.
What makes a good contract? Anyone can add
preconditions and postconditions, but will they do you
any good? Worse yet, will they actualy do more harm
than good? For the example below and for thosein
Exercises 15 and 16, decide whether the specified
contract is good, bad, or ugly, and explain why.

Fird, let'slook at an Eiffe example. Herewe havea
routine for adding a STRING to adoubly linked,
circular ligt (remember that preconditions are labeled
with require, and postconditions with ensure).

-- Add an itemto a doubly |inked
l'ist,

-- and return the newy created NODE

add_item(item: STRING : NCDE is

require
item/= Void
-- /= is '"not equal"'.
deferred -- Abstract base class.
ensure

result.next.previous = result
-- Check the newy
resul t. previous. next
-- added node's |inks.
find_item(item = result
-- Should find it.
end

resul t

15.

16.

Next, let'stry an example in Java—somewhat smilar
to the examplein Exercise 14. insartNumber inserts
an integer into an ordered list. Pre-and postconditions
arelabeled asiniContract (see[URL 17]) .

private int data[];
/**
* @ost datalindex-1] <
dat a[i ndex] &&

* dat a[i ndex] == aVal ue
*/
public Node insertNunmber (final int
aVal ue)
{
int index =

fi ndPl aceTol nsert (aVal ue);

Heresafragment from astack classin Java. Isthisa
good contract?

/**
* @re anltem!= null /1 Require
real data
* @ost pop() == anltem// Verify
that it's
* /1 on the
st ack
*/
public void push(final String anlten)

17.
The classic examples of DBC (asin Exercises 14-16)
show an implementation of an ADT (Abgiract Data
Type)—typicaly astack or queue. But not many
people really write these kinds of low-level classes.

So, for thisexercise, design an interface to akitchen
blender. It will eventually be a\Web-based,

I nternet-enabled, CORBA-fied blender, but for now
we just need the interface to contral it. It hasten
speed settings (0 means off). Y ou can't operateit
empty, and you can change the speed only one unit at
atime (that is, from 0to 1, and from 1 to 2, not from
0to 2).

Here are the methods. Add appropriate pre- and
postconditions and an invariant.

int get Speed()

voi d set Speed(int x)
bool ean i sFull ()
void fill()

voi d enpty()

18.
How many numbersarein the series 0,5,10,15,....,
1007

| | @ve RuBoard E

| | @ve RuBoard

Dead Programs Tell No Lies

Have you noticed that sometimes other people can detect that things aren't well with you before you're aware of the
problem yoursdlf? It's the same with other people's code. If something is starting to go awry with one of our
programs, sometimesit isalibrary routine that catchesit first. Maybe astray pointer has caused usto overwrite afile
handle with something meaningless. The next cal to read will catch it. Perhaps a buffer overrun has trashed a counter
we're about to use to determine how much memory to alocate. Maybe well get afailure from maloc. A logic error a
couple of million instructions ago means that the selector for a case statement isno longer the expected 1, 2, or 3.
Well hit the default case (which is one reason why each and every case/switch statement needs to have a default
clause—we want to know when the "impossible” has happened).

It'seasy tofdl into the"it can't happen” mentdity. Most of us have written code that didn't check that afile closed
successfully, or that atrace statement got written as we expected. And all thingsbeing equdl, it'slikely that we didn't
need to—the code in question wouldn't fail under any normal conditions. But we're coding defensively. We're looking
for rogue pointersin other parts of our program trashing the stack. We're checking that the correct versions of shared
libraries were actually |oaded.

All errors give you information. Y ou could convince yourself that the error can't happen, and chooseto ignoreit.
Instead, Pragmatic Programmerstell themsdavesthat if thereisan error, something very, very bad has happened.

Tip 32

Crash Ealy

Crash, Don't Trash

One of the benefits of detecting problems as soon as you can isthat you can crash earlier. And many times, crashing
your program isthe best thing you can do. The dternative may be to continue, writing corrupted data to some vita
database or commanding the washing machine into its twentieth consecutive spin cycle.

The Javalanguage and libraries have embraced this philosophy. When something unexpected happens within the
runtime system, it throws a RuntimeException. If not caught, thiswill percolate up to the top level of the program and
causeit to halt, displaying a stack trace.

Y ou can do the samein other languages. If you don't have an exception mechanism, or if your libraries don't throw
exceptions, then make sure you handle the errors yoursdlf. In C, macros can be very useful for this:

#defi ne CHECK(LINE, EXPECTED) \
{ int rc = LINE \
if (rc !'= EXPECTED) \

ut_abort(__FILE_, __LINE_, #LINE, rc, EXPECTED); }

void ut_abort(char *file, int In, char *line, int rc, int exp) {

fprintf(stderr, "% line %l\n" %': expected %, got %\ n"
file, In, line, exp, rc);
exit(l);
}

Then you can wrep cdlsthat should never fall using

CHECK(stat ("/tnmp", &stat_buff), 0);

If it should fail, you'd get a message written to stderr:

source.c line 19
"stat("/tnp", &stat buff)': expected 0, got -1

Clearly it is sometimes ingppropriate smply to exit arunning program. Y ou may have claimed resources that might
not get released, or you may need to write log messages, tidy up open transactions, or interact with other processes.
The techniqueswe discussin \When to Use Exceptions, will help here. However, the basic principle staysthe
same—when your code discovers that something that was supposed to be impossible just happened, your program
Isno longer viable. Anything it does from this point forward becomes suspect, o terminate it as soon as possble. A

dead program normally does alot less damage than a crippled one.

Related sectionsinclude:

Design by Contract

When to Use Exceptions

| | @ve RuBoard

| | @ve RuBoard

Assertive Programming

Thereisa luxury in self-reproach. When we blame our selves we feel no one else has a right to blame us.
Oscar Wilde, The Picture of Dorian Gray

It seemsthat there's amantrathat every programmer must memorize early in hisor her career. It isafundamental
tenet of computing, acore belief that we learn to apply to requirements, designs, code, comments, just about
everything we do. It goes

THIS CAN NEVER HAPPEN . .,

"This code won't be used 30 years from now, so two-digit dates arefine." "This application will never be used
abroad, so why internationdizeit?' "count can't be negative." "This printf can't fail."

Let'snot practice thiskind of salf-deception, particularly when coding.
Tip 33

If It Can't Happen, Use Assartionsto Ensure That It Won't

Whenever you find yoursdlf thinking "but of course that could never happen,” add code to check it. The easiest way
to do thisiswith assertions. In most C and C++ implementations, you'll find some form of assert or _assert macro
that checks a Boolean condition. These macros can be invauable. If apointer passed in to your procedure should
never be NULL, then check for it:

void witeString(char *string) {
assert(string != NULL);

Assartions are also useful checks on an dgorithm's operation. Maybe you've written aclever sort agorithm. Check
that it works:

for (int i =0; i < numentries-1; i++) {
assert(sorted[i] <= sorted[i+i]);

}

Of course, the condition passed to an assertion should not have a side effect (see the box on page 124). Also
remember that assertions may be turned off at compile time—never put code that must be executed into an assert.

Don't use assertionsin place of red error handling. Assertions check for things that should never happen: you don't
want to be writing code such as

printf("Enter 'Y or 'N: ");
ch = getchar();
assert((ch == 'Y) || (ch =="'N)); /* bad ideal */

And just because the supplied assert macros cal exit when an assertion fails, there's no reason why versionsyou
write should. If you need to free resources, have an assertion failure generate an exception, longjmp to an exit point,
or cal an error handler. Just make sure the code you execute in those dying milliseconds doesn't rely on the
information thet triggered the assertion failurein thefirst place.

Leave Assertions Turned On

Thereisacommon misunderstanding about assertions, promulgated by the people who write compilers and language
environments. It goes something likethis:

Assertions odd some overhead to code. Because they check for things that should never happen, they'll get
triggered only by a bug in the code. Once the code has been tested and shipped, they are no longer needed,
and should be turned off to make the code run faster. Assertions are a debugging facility.

There are two patently wrong assumptions here. First, they assume that testing finds al the bugs. In redlity, for any
complex program you are unlikely to test even aminiscule percentage of the permutations your code will be put
through (see Ruthless Tedting). Second, the optimists are forgetting that your program runsin adangerous world.
During testing, rats probably won't gnaw through a communications cable, someone playing a game won't exhaust
memory, and log fileswon't fill the hard drive. These things might happen when your program runsin a production
environment. Your firgt line of defenseis checking for any possible error, and your second is using assertionsto try to
detect those you've missed.

Turning off assertions when you deliver aprogram to production islike crossing a high wire without anet because
you once made it acrossin practice. Theré's dramatic value, but it's hard to get life insurance.

Evenif you do have performance issues, turn off only those assertionsthat redlly hit you. The sort example above
may beacritica part of

Assertion and Side Effects

It isembarrassing when the code we add to detect errors actually ends up creatings new errors. This
can happen with assartions if evaluating the condition has Sde effects. for example, in Javait would bea
bad to code something such as

while (iter.hasnoreEl emrents () {

Test. ASSERT(iter.nextEl ements() != null);
object obj = iter.nextEl enment();
...

}

The .nextElement() call in the ASSERT has the Side effects of moving the iterator past the dement being
fetched, and so the loop will process only haf the eementsin the collection. It would be better to write

while (iter.hasnoreEl emrents()) {

object obj = iter.nextEl enment();
Test. ASSERT(obj != null);
.. ..

}

Thisproblem isakind of "Heisenbug"—debugging that changes the behavior of the sysem system being
debugged (see[URL 52]).

your gpplication, and may need to be fast. Adding the check means another pass through the data, which might be
unacceptable. Make that particular check optional,[2] but leavetherestin.

[2] In C-based languages, you can either use the preprocessor or use if statements to make assertions optional. Many implementations turn off code
generation for the assert macro if a compile-time flag is set (or not set). Otherwise, you can place the code within an if statement with a constant
condition, which many compilers (including most common Java systems) will optimize away.

Related sectionsinclude:

Debugging

Design by Contract

How to Balance Resources

Programming by Coincidence

Exercises

19.

A quick redity check. Which of these"impossbl€e’ things

can happen?

1.

20.

A month with fewer than 28 days

sat("." ,&sb) == -1 (that is, can't access the current
directory)

InC++:a=2;b=3;if (a+ b!=5) exit(1);

A triangle with an interior angle sum \u8800 180°

A minute that doesn't have 60 seconds

InJava a+1)<=a

Develop asmple assertion checking classfor Java.

| | @ve RuBoard

| | @ve RuBoard

When to Use Exceptions

In Dead Programs Tell No Lies, we suggested that it is good practice to check for every possible error—particularly
the unexpected ones. However, in practice this can lead to some pretty ugly code; the norma logic of your program
can end up being totally obscured by error handling, particularly if you subscribe to the "aroutine must have asingle
return statement” school of programming (we don't). We've seen code that 1ooks something like the following:

retcode = K
if (socket.read(name) != OK) {
ret code = BAD_READ,
}
el se {
pr ocessNane(nane) ;
if (socket.read(address) != OK) {
ret code = BAD_READ,

}
el se {
pr ocessAddr ess(addr ess);
if (socket.read(tel No) !'= OK) {
ret code = BAD_READ,
}
el se {
/] etc, etc...
}
}

}

return retcode;

Fortunately, if the programming language supports exceptions, you can rewrite this code in afar nester way:

retcode = CK;

try {
socket . read(nane) ;

process(namne);

socket . read(addr ess);
pr ocessAddr ess(addr ess);

socket . read(tel No);
/|l etc, etc...

}
catch (1 Oexception e) {

retcode = BAD READ;
Logger.log("Error reading individual: " + e.getMessage());

return retcode;

The normd flow of control isnow clear, with al the error handling moved off to asingle place.

What |s Exceptional ?

One of the problems with exceptions is knowing when to use them. We believe that exceptions should rarely be used
as part of aprogram's norma flow; exceptions should be reserved for unexpected events. Assume that an uncaught
exception will terminate your program and ask yoursdf, "Will this code dill runif | remove dl the exception
handlers?' If the answer is''no," then maybe exceptions are being used in nonexceptional circumstances.

For example, if your code triesto open afilefor reading and that file does not exist, should an exception be raised?

Our answer is, "It depends.” If thefile should have been there, then an exception iswarranted. Something
unexpected happened—afile you were expecting to exist seemsto have disappeared. On the other hand, if you have
no ideawhether thefile should exist or not, then it doesn't seem exceptiond if you can't find it, and an error returnis

appropriate.

Let'slook at an example of thefirst case. The following code opens the file /etc/passwd, which should exist on al
Unix systems. If it falls, it passes on the FileNotFoundException to its caller.

public void open_passwd() throws Fil eNot FoundException {

/1 This may throw Fil eNot FoundException.. .

i pstream = new Fil el nput Strean("/etc/passwd");
...

}

However, the second case may involve opening afile specified by the user on the command line. Here an exception
isn't warranted, and the code |ooks different:

public bool ean open_user_file(String nane)
throws Fil eNot FoundException {

File f = new Fil e(nane);

if (!f.exists()) {
return fal se;

}

i pstream = new Fil el nput Strean{(f);
return true;

Note that the FilelnputStream call can till generate an exception, which the routine passes on. However, the
exception will be generated under only truly exceptiona circumstances; smply trying to open afile that does not exist
will generate aconventiona error return.

Tip 34

Use Exceptions for Exceptiona Problems

Why do we suggest this approach to exceptions? Well, an exception represents an immediate, nonlocal transfer of
control—it'sakind of cascading goto. Programs that use exceptions as part of their norma processing suffer from all
the readability and maintainability problems of classic spaghetti code. These programs break encapsulation: routines
and their calersare moretightly coupled viaexception handling.

Error Handlers Are an Alternative

An error handler isaroutine that is called when an error is detected. Y ou can register aroutine to handle a specific
category of errors. When one of these errors occurs, the handler will be called.

There are times when you may want to use error handlers, either instead of or alongside exceptions. Clearly, if you
are using alanguage such as C, which does not support exceptions, thisis one of your few other options (seethe
challenge on the next page). However, sometimes error handlers can be used even in languages (such as Java) that
have a good exception handling scheme built in.

Congder the implementation of a client-server application, using Java's Remote Method Invocation (RMI) facility.
Because of theway RMI isimplemented, every cdl to aremote routine must be prepared to handle a
RemoteException. Adding code to handle these exceptions can become tedious, and meansthat it is difficult to write
code that works with both local and remote routines. A possible work-around isto wrap your remote objectsin a
classthat isnot remote. This class then implements an error handler interface, dlowing the client codeto register a
routine to be called when aremote exception is detected.

Related sectionsinclude:

Dead Programs Tell No Lies

Challenges

Languages that do not support exceptions often have some other nonlocd transfer of control mechanism (C
has longjmp/satjmp, for example). Consider how you could implement some kind of ersatz exception
mechanism using these facilities. What are the benefits and dangers? What specia steps do you need to take
to ensure that resources are not orphaned? Does it make sense to use this kind of solution whenever you
codein C?

Exercises

| | @ve RuBoard

21.
While designing anew container class, you identify the
following possible error conditions:

1.

No memory avallable for anew eement in the add
routine

Requested entry not found in the fetch routine

null pointer passed to the add routine

How should each be handled? Should an error be
generated, should an exception be raised, or should the
condition beignored?

| | @ve RuBoard

How to Balance Resour ces

"I brought you into thisworld, " my father would say,” and | can take you out. It don't make no difference to
me. I'll just make another one like you."

Bill Cosby, Fatherhood

We al manage resources whenever we code: memory, transactions, threads, flies, timers—all kinds of thingswith
limited availability. Mot of the time, resource usage follows a predictable pattern: you alocate the resource, useit,
and then dedllocate it.

However, many developers have no consistent plan for dealing with resource allocation and deallocation. So let us
uggest asmpletip:

Tip35

Finish What Y ou Start

Thistip iseasy to apply in most circumstances. It Smply meansthat the routine or object that alocates aresource
should be responsiblefor dedllocating it. Let's see how it gpplies by looking at an example of some bad code—an
gpplication that opens afile, reads customer information from it, updates afield, and writes the result back. Weve
eliminated error handling to make the example clearer.

voi d readCustoner(const char *fName, Custoner *cRec) {

cFile = fopen(fNanme, "r+");
fread(cRec, sizeof (*cRec), 1, cFile);

}

void witeCustoner(Custoner *cRec) {
rewi nd(cFile);
fwite (cRec, sizeof (*cRec), 1, cFile);
fclose(cFile);

}

voi d updat eCust onmer (const char *fNanme, doubl e newBal ance) {
Cust omer cRec;
readCust oner (f Nane, &cRec);
cRec. bal ance = newBal ance;

writ eCust oner (&cRec) ;
}

At firgt Sght, the routine updateCustomer looks pretty good. It seemsto implement the logic we require—reading a
record, updating the baance, and writing the record back out. However, thistidiness hides amgor problem. The
routines readCustomer and writeCustomer are tightly coupled(s] —they share the globa variable cFile.readCustomer
opensthefile and storesthefile pointer in cFile, and writeCustomer usesthat stored pointer to close thefilewhen it
finishes. Thisgloba variable doesn't even appear in the updateCustomer routine.

[3] For adiscussion of the dangers of coupled code, see Decoupling and the Law of Demeter.

Why isthis bad? Let's consder the unfortunate maintenance programmer who istold that the specification has
changed—the balance should be updated only if the new vaue is not negative. She goesinto the source and changes
updateCustomer:

voi d updat eCust onmer (const char *fNanme, doubl e newBal ance) {
Cust oner cRec;
readCust oner (f Nane, &cRec);

if (newBal ance >= 0.0) {
cRec. bal ance = newBal ance;

writ eCust oner (&cRec) ;

}
}

All seemsfine during testing. However, when the code goesinto production, it collapses after severa hours,
complaning of too many open files. Because writeBaance is not getting caled in some circumstances, thefileis not
Qgetting closed.

A very bad solution to this problem would be to ded with the specid casein updateCustomer:

voi d updat eCust oner (const char *fName, doubl e newBal ance) ({
Cust oner cRec;
readCust omrer (f Nane, &cRec);

if (newBal ance >= 0.0) {
cRec. bal ance = newBal ance;

writ eCust omrer (&cRec) ;

}

el se
fclose(cFile);

Thiswill fix the problem—the file will now get closed regardless of the new balance—but the fix now meansthat
three routines are coupled through the globa cFile. Werefdling into atrap, and things are going to start going
downhill rgpidly if we continue on this course.

The finish what you start tip tellsusthat, idedlly, the routine that alocates aresource should also freeit. We can
apply it here by refactoring the code dightly:

void readCustoner(FILE *cFile, Custoner *cRec) {
fread(cRec, sizeof (*cRec), 1, cFile);

}

void witeCustomer(FILE *cFile, Custoner *cRec) {
rewi nd(cFile);
fwite(cRec, sizeof(*cRec), 1, cFile);

}

voi d updat eCust onmer (const char *fNanme, doubl e newBal ance) {
FILE *cFil e;
Cust oner cRec;

cFile = fopen(fNanme, "r+"); [>---
readCust oner (cFil e, &cRec); /1 /
if (newBal ance >= 0.0) { /1 /
cRec. bal ance = newBal ance; /1 /
writeCustoner(cFile, &cRec); /1 /
} /1 /
fclose(cFile); [<---

Now al the responghbility for the fileisin the updateCustomer routine. It opensthefile and (finishing what it starts)
closesit before exiting. The routine baances the use of thefile: the open and close arein the same place, and it is
gpparent that for every open there will be a corresponding close. The refactoring aso removes an ugly globa variable.

Nest Allocations

The basic pattern for resource allocation can be extended for routines that need more than one resource at atime.
There arejust two more suggestions:

1.

Dedllocate resources in the opposite order to that in which you alocate them. That way you won't orphan
resourcesif one resource contains references to another.

When all ocating the same set of resourcesin different placesin your code, dways dlocate them in the same
order. Thiswill reduce the possibility of deadlock. (If process A claimsresourcel and is about to claim
resource2, while process B has claimed resource2 and istrying to get resourcel, the two processes will wait
forever.)

It doesn't matter what kind of resources we're using—transactions, memory, files, threads, windows—the basic
pattern applies. whoever alocates a resource should be responsible for dedllocating it. However, in some languages
we can develop the concept further.

| | @ve RuBoard

| | @ve RuBoard

Objectsand Exceptions

The equilibrium between dlocations and dedllocationsis reminiscent of a classs constructor and destructor. The class
represents a resource, the constructor gives you a particular object of that resource type, and the destructor removes
it from your scope.

If you are programming in an object-oriented language, you may find it useful to encapsulate resourcesin classes.
Each time you need a particular resource type, you instantiate an object of that class. When the object goes out of
scope, or isreclaimed by the garbage collector, the object's destructor then deall ocates the wrapped resource.

This approach has particular benefits when you're working with languages such as C++, where exceptions can
interfere with resource dedllocation.

| | @ve RuBoard

| | @ve RuBoard

Balancing and Exceptions

Languages that support exceptions can make resource deallocation tricky. If an exception isthrown, how do you
guarantee that everything alocated prior to the exception istidied up? The answer depends to some extent on the
language.

Balancing Resour ces with C++ Exceptions

C++ supportsatry...catch exception mechanism. Unfortunately, this means that there are always at least two
possible paths when exiting aroutine that catches and then rethrows an exception:

voi d doSonet hi ng(void) {

Node *n = new Node;

try {
// do sonething

}
catch (...) {

del ete n;
t hrow,

}

del ete n;

Notice that the node we create isfreed in two places—once in the routine's normal exit path, and oncein the
exception handler. Thisisan obviousviolation of the DRY principle and a maintenance problem waiting to happen.

However, we can use the semantics of C++ to our advantage. Locd objects are automaticaly destroyed on exiting
from their enclosing block. Thisgives usacouple of options. If the circumstances permit, we can change"n" froma
pointer to an actual Node object on the stack:

voi d doSonet hi ngl(void) {

Node n;
try {
// do sonething
}
catch (...) {
t hr ow,
}

}

Herewe rely on C++ to handle the destruction of the Node object automatically, whether an exception isthrown or
not.

If the switch from a pointer is not possible, the same effect can be achieved by wrapping the resource (in this case, a

Node pointer) within another class.

/| Wapper class for Node resources
cl ass NodeResource {
Node *n;

publi c:
NodeResource() { n = new Node; }
~NodeResource() { delete n; }

Node *operator->() { return n; }
b
voi d doSoret hi ng2(voi d) {

NodeResource n;

try {
// do sonething

}
catch (...) {

t hrow,

}
}

Now the wrapper class, NodeResource, ensures that when its objects are destroyed the corresponding nodes are
also destroyed. For convenience, the wrapper provides a dereferencing operator ->, so that its users can access the
fieldsin the contained Node object directly.

Because thistechniqueis so useful, the standard C++ library provides the template classauto_ptr, which givesyou
automatic wrappers for dynamicaly allocated objects.

voi d doSonet hi ng3(void) {
aut o_ptr<Node> p (new Node);
/1 Access the Node as p->...
// Node autonmatically deleted at end

}

Balancing Resourcesin Java

Unlike C++, Javaimplements alazy form of automatic object destruction. Unreferenced objects are consdered to
be candidates for garbage collection, and their finalize method will get caled should garbage collection ever clam
them. While a convenience for devel opers, who no longer get the blame for most memory lesks, it makesit difficult
to implement resource clean-up using the C++ scheme. Fortunately, the designers of the Javalanguage thoughtfully
added alanguage feature to compensate, thefindly clause. When atry block containsafindly clause, codein that
clauseis guaranteed to be executed if any statement in the try block is executed. It doesn't matter whether an
exception isthrown (or even if the code in the try block executes areturn)—the codein thefinally clause will get run.
This means we can balance our resource usage with code such as

public void doSonething() throws | OException {

File tnpFile = new Fil e(tnpFil eNane);
FileWiter tnmp = new FileWiter(tnpFile);

try {

// do some work

}

finally {
tnpFile.delete();

}

}

The routine uses atemporary file, which we want to delete, regardless of how the routine exits. Thefindly block
alowsusto expressthisconcisdly.

| | @ve RuBoard

| | @ve RuBoard HE

When You Can't Balance Resour ces

There are times when the basi ¢ resource all ocation pattern just isn't gppropriate. Commonly thisisfound in programs
that use dynamic data structures. One routine will allocate an area.of memory and link it into some larger structure,
whereit may stay for sometime.

Thetrick hereisto establish asemantic invariant for memory allocation. Y ou need to decide who is responsible for
datain an aggregate data structure. What happens when you dedll ocate the top-level structure? Y ou have three main
options:

1.

Thetop-leve structureisalso responsible for freeing any substructuresthat it contains. These structuresthen
recursively delete datathey contain, and so on.

Thetop-leve structureissmply dedlocated. Any structuresthat it pointed to (that are not referenced
elsawhere) are orphaned.

Thetop-levd structure refusesto dedlocate itsdlf if it contains any substructures.

The choice here depends on the circumstances of each individua data structure. However, you need to make it
explicit for each, and implement your decison consistently. Implementing any of these optionsin aprocedura
language such as C can be a problem: data structures themsealves are not active. Our preferencein these
circumstances isto write amodule for each mgjor structure that provides standard alocation and dedllocation
facilitiesfor that sructure. (This module can aso provide facilities such as debug printing, seridization, deseridization,
and traversal hooks.)

Findly, if keeping track of resources getstricky, you can write your own form of limited automatic garbage collection
by implementing areference counting scheme on your dynamically alocated objects. The book More Effective C++
[Mey96] dedicates a section to thistopic.

| | @ve RuBoard

| | @ve RuBoard

Checking the Balance

Because Pragmatic Programmerstrust no one, including ourselves, wefed that it isawaysagood ideato build code
that actualy checks that resources are indeed freed appropriately. For most applications, this normally means
producing wrappers for each type of resource, and using these wrappersto keep track of al allocations and
dedllocations. At certain pointsin your code, the program logic will dictate that the resourceswill bein acertain Sate:
use the wrappersto check this.

For example, along-running program that services requests will probably have asingle point a the top of itsmain
processing loop whereit waitsfor the next request to arrive. Thisisagood place to ensure that resource usage has
not increased since the last execution of the loop.

At alower, but no lessussful leve, you can invest in tools that (among other things) check your running programs for
memory leaks. Purify (http://mwww.rationa.com) and Insure++ (http://www.parasoft.com) are popular choices.

Related sectionsinclude:

Design by Contract

Assartive Programming

Decoupling and the Law of Demeter

Challenges

Although there are no guaranteed ways of ensuring that you always free resources, certain design techniques,
when gpplied congstently, will help. In the text we discussed how establishing a semantic invariant for mgjor
data structures could direct memory dedllocation decisions. Consider how Design by Contract, could help
refinethisidea

| | @ve RuBoard

http://www.rational.com/default.htm
http://www.parasoft.com/default.htm
http://www.rational.com
http://www.parasoft.com

| @ve RuBoard [Crrevious]nexr o]

Exercises

22.
Some C and C++ devel opers make a point of setting
apointer to NULL after they dedllocate the memory it
references. Why isthisagood idea?

23.
Some Java devel opers make a point of setting an
object varigbleto NULL after they havefinished using
the object. Why isthisagood idea?

| @ve RuBoard [Crrevious)nexr o)

| | @ve RuBoard HE

Chapter 5. Bend or Break

Life doesn't sand ill.

Neither can the code that we write. In order to keep up with today's near-frantic pace of change, we need to make
every effort to write code that's as |oose—as flexible—as possible. Otherwise we may find our code quickly
becoming outdated, or too brittle to fix, and may ultimately be left behind in the mad dash toward the future.

In Revershility, we talked about the perils of irreversible decisons. In this chapter, well tell you how to make
reversible decisions, so your code can stay flexible and adaptable in the face of an uncertain world.

First we need to look at coupling—the dependencies among modules of code. In Decoupling and the Law of
Demeter well show how to keep separate concepts separate, and decrease coupling.

A good way to stay flexibleisto write less code. Changing code leaves you open to the possibility of introducing
new bugs. Metaprogramming will explain how to move details out of the code completely, where they can be
changed more safely and eeglly.

In Temporal Coupling, well look at two aspects of time asthey relate to coupling. Do you depend on the "tick™
coming before the "tock™? Not if you want to stay flexible.

A key concept in creating flexible code is the separation of adata model from a view, or presentation, of that modd.
Well decouple moddsfromviewsin It's Just a View.

Findly, there's atechnique for decoupling modules even further by providing amesting place where modules can
exchange data anonymoudy and asynchronoudy. Thisisthetopic of Blackboards.

Armed with these techniques, you can write code that will "roll with the punches.”

| | @ve RuBoard

| | @ve RuBoard HE

Decoupling and the L aw of Demeter

Good fences make good neighbors.
Robert Frost, " Mending Wall"

In Orthogondity, and Design by Contract, we suggested that writing "shy" codeis beneficia. But "shy" works two
ways. don't reveal yourself to others, and don't interact with too many people.

Spies, dissdents, revolutionaries, and such are often organized into small groups of people caled cells. Although
individuasin each cell may know each other, they have no knowledge of thosein other cells. If onecdl is
discovered, no amount of truth serum will reved the names of others outside the cell. Eliminating interactions between
cdlls protects everyone.

Wefed that thisisagood principle to apply to coding aswell. Organize your code into cells (modules) and limit the
interaction between them. If one module then gets compromised and has to be replaced, the other modules should be
ableto carry on.

Minimize Coupling

Wheat's wrong with having modul es that know about each other? Nothing in principle—we don't need to be as
paranoid as spies or dissidents. However, you do need to be careful about how many other modules you interact
with and, more importantly, how you cameto interact with them.

Suppose you are remodeling your house, or building a house from scratch. A typica arrangement involvesa"generd
contractor.” Y ou hire the contractor to get the work done, but the contractor may or may not do the construction
persondly; the work may be offered to various subcontractors. But asthe client, you are not involved in deding with
the subcontractors directly—the genera contractor assumes that set of headaches on your behalf.

Wed liketo follow this same modd in software. When we ask an object for a particular service, wed like the
sarvice to be performed on our behaf. We do not want the object to give us athird-party object that we have to
dedl with to get the required service.

For example, suppose you are writing a class that generates a graph of scientific recorder data. Y ou have data
recorders spread around the world; each recorder object contains alocation object giving its position and time zone.
Y ou want to let your users select arecorder and plot its data, |abeled with the correct time zone. Y ou might write

public void plotDate(Date aDate, Selection aSelection) {
Ti meZone tz =
aSel ection. get Recorder (). getLocation().getTi meZone();

But now the plotting routine is unnecessarily coupled to three classes— Selection, Recorder, and Location. This
style of coding dramatically increases the number of classes on which our class depends. Why isthisabad thing? It
increasesthe risk that an unrelated change somewhere dsein the system will affect your code. For instance, if Fred
meakes a change to Location such that it no longer directly contains a TimeZone, you have to change your code as
well.

Rather than digging though ahierarchy yoursdlf, just ask for what you need directly:

public void plotDate(Date aDate, TineZone aTz) {

}
pl ot Dat e(soneDat e, soneSel ecti on. get Ti meZone());

We added a method to Selection to get the time zone on our behdf: the plotting routine doesn't care whether the time
zone comes from the Recorder directly, from some contained object within Recorder, or whether Selection makes
up adifferent time zone entirely. The sdection routine, in turn, should probably just ask the recorder for itstime zone,
leaving it up to the recorder to get it from its contained L ocation object.

Traversing relaionships between objects directly can quickly lead to acombinatoria explosion[i] of dependency
relationships. Y ou can see symptoms of this phenomenon in anumber of ways.

[1] If n objects all know about each other, then a change to just one object can result in the other n - 1 objects needing changes.

1.

Large C or C++ projects where the command to link aunit test islonger than the test program itself
2.

"Simple" changesto one module that propagate through unrelated modulesin the system
3.

Developers who are afraid to change code because they aren't sure what might be affected

Systems with many unnecessary dependencies are very hard (and expensive) to maintain, and tend to be highly
unstable. In order to keep the dependencies to aminimum, welll use the Law of Demeter to design our methods and
functions.

The Law of Demeter for Functions

The Law of Demeter for functions [LH89] attempts to minimize coupling between modulesin any given program. It
triesto prevent you from reaching into an object to gain accessto athird object's methods. The law is summarized in
Figure 5.1 on the next page.

Figure5.1. Law of Demeter for functions

class Demeter {

private:
A *a; The Law of Demeter for functions
int func(); states that any method of an
public:

- object should call only methods
void example(B& b); belonging to:

vold Demeter: :example{B& b) {
3

C

, - any paramelers that were
|b.1nvert{), passed in to the method
a = new A():
|a—>setActive(};k—~m— any objects it created

: any directly held o et
[Coprint Oy gty et compe
}

By writing "shy" code that honorsthe Law of Demeter as much as possible, we can achieve our objective:

Tip 36

Minimize Coupling Between Modules

Does It Really Make a Difference?

Whileit sounds good in theory, does following the Law of Demeter redly help to create more maintainable code?

Studies have shown [BBM 96] that classesin C++ with larger response sets are more prone to error than classes
with smaller response sets (a response set is defined to be the number of functions directly invoked by methods of
the class).

Because following the Law of Demeter reduces the Size of the response set in the calling class, it follows that classes
designed in thisway will also tend to have fewer errors (see [URL 56] for more papers and information on the
Demeter project).

Using The Law of Demeter will make your code more adaptable and robust, but at a cost: asa"genera contractor,”
your module must delegate and manage any and dl subcontractors directly, without involving clients of your module.
In practice, thismeansthat you will bewriting alarge number of wrapper methods that smply forward the request on
to adelegate. These wrapper methods will impaose both a runtime cost and a space overhead, which may be
sgnificant—even prohibitive—in some gpplications.

Aswith any technique, you must balance the pros and consfor your particular gpplication. In database schema
designitiscommon practice to "denormalize’ the schemafor a performance improvement: to violate the rules of
normdization in exchange for speed. A smilar tradeoff can be made here aswell. In fact, by reversing the Law of

Demeter and tightly coupling severa modules, you may redlize an important performance gain. Aslong asitiswell
known and acceptable for those modules to be coupled, your designisfine.

Physical Decoupling

In this section we're concerned largely with designing to keep things logically decoupled within systems.
However, thereis another kind of interdependence that becomes highly significant as systems grow
larger.In hisbook Large-scale C++ software Design [Lak96], John Lakos addresses theissues
surrounding the relationships among the files, directories, and libraries that make up asystem. Large
projectsthat ignore these physical design problemswind up with build cyclesthat are measured in days
and unit teststhat may drag in the entire system as support code, among other problems. Mr. Lakos
argues convincingly that logica and physica design must proceed in tandem—that undoing the damage
doneto alarge body of code by cyclic dependenciesis extremdy difficult. We recommend this book if
you areinvolved in large-scale developments, even if C++ isn't your implementation language.

Otherwise, you may find yourself on the road to a brittle, inflexible future. Or no future at all.

Related sectionsinclude:

Orthogondlity
Revershility

Design by Contract

How to Balance Resources

It'sdust aView

Pragmétic Teams

Ruthless Tedting

Challenges

We've discussed how using delegation makesit easier to obey the Law of Demeter and hence reduce
coupling. However, writing dl of the methods needed to forward calls to delegated classesis boring and
error prone. What are the advantages and disadvantages of writing a preprocessor that generates these calls
automaticaly? Should this preprocessor be run only once, or should it be used as part of the build?

Exercises

24.
We discussed the concept of physical decoupling in the
box on on the facing page. Which of thefollowing C++
heeder fliesis moretightly coupled to the rest of the

sysem?
personl.h person2.h:
#include "date.h" cl ass Date;
class Personl { class Person2 {
private: private:

Dat e nyBirthdate; Date *nyBirthdate;
publi c: publi c:

Per sonl(Dat e Per son2(Dat e
&birthbDate); &birt hbDat e) ;

I ...

25.
For the example below and for those in Exercises 26
and 27, determineif the method calls shown are dlowed
according to the Law of Demeter. Thisfirs oneisin Java

public void showBal ance(BankAccount acct) {
Money amt = acct. getBal ance();
print ToScreen(am .printFormat());

}

26.
Thisexampleisdsoin Java.

public class Col ada {
private Bl ender nyBl ender;
private Vector nyStuff;
public Col ada() {
nyBl ender = new Bl ender () ;
myStuff = new Vector();

}
private void doSonething() {

myBl ender . addl ngredi ent s(nmySt uff. el enment s()
)

}
}

27.
Thisexampleisin C++.

voi d processTransacti on(BankAccount acct,

int) {
Person *who;
Money ant ;

ant . set Val ue(123. 45) ;

acct . set Bal ance(ant);

who = acct. get Omer();

mar KWor kf | ow(who- >nane(), SET_BALANCE);

| | @ve RuBoard

| | @ve RuBoard

M etaprogramming
No amount of genius can overcome a preoccupation with detail

Levy'sEighth Law

Details mess up our pristine code—especidly if they change frequently. Every timewe haveto go in and changethe
code to accommodate some change in businesslogic, or in thelaw, or in management's personal tastes of the day,
we run therisk of breaking the syslem—of introducing anew bug.

So we say "out with the details" Get them out of the code. While we're at it, we can make our code highly
configurable and "soft"—that is, easily adaptable to changes.

Dynamic Configuration

Firgt, we want to make our systems highly configurable. Not just things such as screen colors and prompt text, but
deeply ingrained items such as the choice of algorithms, database products, middleware technology, and
user-interface style. These items should be implemented as configuration options, not through integration or

enginesring.
Tip 37

Configure, Don't Integrate

Use metadata to describe configuration options for an gpplication: tuning parameters, user preferences, the
ingtallation directory, and so on.

What exactly is metadata? Strictly speaking, metadata is data about data. The most common exampleis probably a
database schema or data dictionary. A schema contains data that describes fields (columns) in terms of names,
storage lengths, and other attributes. Y ou should be able to access and manipulate this information just as you would
any other datain the database.

We usethetermin its broadest sense. Metadatais any datathat describes the application—how it should run, what
resources it should use, and so on. Typicaly, metadataiis accessed and used at runtime, not at compiletime. Y ou use
metadata dl the time—at least your programs do. Suppose you click on an option to hide the toolbar on your Web
browser. The browser will store that preference, as metadata, in some sort of internal database.

This database might bein a proprietary format, or it might use a stlandard mechanism. Under Windows, ether an
initidization file (using the suffix .ini) or entriesin the system Registry are typicd. Under Unix, the X Window System

provides smilar functionaity usng Application Default files. Java uses Property files. Inal of these environments, you
Specify akey to retrieve avaue. Alternatively, more powerful and flexible implementations of metadata use an
embedded scripting language (see Domain Languages, for detalls).

The Netscape browser has actualy implemented preferences using both of these techniques. In Version 3,
preferences were saved as Smple key/vaue pairs:.

SHOW TOOLBAR: Fal se

Later, Verson 4 preferences looked more like JavaScript:

user _pref ("custtool bar. Browser. Navi gati on_Tool bar. open", false);

Metadata-Driven Applications

But we want to go beyond using metadatafor smple preferences. We want to configure and drive the gpplication via
metadata as much as possble. Our god isto think declaratively (pecifying what isto be done, not how) and create
highly dynamic and adaptable programs. We do this by adopting agenera rule: program for the genera case, and put
the specifics somewhere € se—outsi de the compiled code base.

Tip 38

Put Abstractionsin Code Details in Metadata

There are severd benefitsto this approach:

It forces you to decouple your design, which resultsin amore flexible and adaptable program.

It forces you to create amore robust, abstract design by deferring details—deferring them al the way out of
the program.

Y ou can customize the gpplication without recompiling it. Y ou can also usethisleve of customization to
provide easy work-aroundsfor critical bugsin live production systems.

M etadata can be expressed in amanner that's much closer to the problem domain than a genera-purpose
programming language might be (see Domain Languages).

Y ou may even be able to implement severa different projects using the same application engine, but with
different metadata.

Wewant to defer definition of most details until the last moment, and leave the detail s as soft—as easy to
change—as we can. By crafting a solution that allows us to make changes quickly, we stand a better chance of
coping with theflood of directiona shiftsthat sSwamp many projects (see Revershility).

BusinessLogic

So you've made the choice of database engine a configuration option, and provided metadata to determine the
user-interface style. Can we do more? Definitely.

Because business policy and rules are more likely to change than any other aspect of the project, it makes senseto
maintain themin avery flexibleformat.

For example, your purchasing application may include various corporate policies. Maybe you pay smdl suppliersin
45 days and large ones in 90 days. Make the definitions of the supplier types, aswell asthe time periods themsalves,
configurable. Take the opportunity to generdize.

Maybe you are writing a system with horrendous workflow requirements. Actions start and stop according to
complex (and changing) business rules. Consider encoding them in some kind of rule-based (or expert) system,
embedded within your application. That way, you'll configureit by writing rules, not cutting code.

Less complex logic can be expressed using amini-language, removing the need to recompile and redeploy when the
environment changes. Have alook at page 58 for an example.

When to Configure

Asmentioned in The power of plain Text, we recommend representing configuration metadatain plain
text—it makeslifethat much esser.

But when should aprogram read this configuration? Many programswill scan such thingsonly at startup,
which isunfortunate. If you need to change the configuration, thisforces you to restart the gpplication. A
more flexible gpproach isto write programs that can reload their configuration whilethey'rerunning. This
flexibility comesat acogt: it ismore complex to implement.

So congider how your gpplication will be used: if it isalong-running server process, you will want to
provide some way to reread and gpply metadata while the program is running. For asmal client GUI
application that restarts quickly, you may not need to.

This phenomenon is not limited to gpplication code. Weve dl been annoyed at operating systems that
force usto reboot when weingtal some smple gpplication or change an innocuous parameter.

An Example: Enterprise Java Beans

Enterprise Java Beans (EJB) isaframework for smplifying programming in adistributed, transaction-based
environment. We mention it here because EJB illustrates how metadata can be used both to configure applications
and to reduce the complexity of writing code.

Suppose you want to create some Java software that will participate in transactions across different machines,
between different database vendors, and with different thread and |oad-bal ancing models.

The good newsis, you don't have to worry about al that. Y ou write a bean—a sdlf-contained object that follows
certain conventions—and placeit in a bean container that manages much of the low-level detail on your behdf. You
can write the code for a bean without including any transaction operations or thread management; EJB uses metadata
to specify how transactions should be handled.

Thread dlocation and load baancing are specified as metadata to the underlying transaction service that the container
uses. This separation dlows us greet flexibility to configure the environment dynamicaly, a runtime.

The bean's container can manage transactions on the bean's behdf in one of severd different styles (including an
option where you control your own commits and rollbacks). All of the parametersthat affect the bean's behavior are
gpecified in the bean's deployment descriptor—a serialized object that contains the metadata we need.

Digtributed systems such as EJB are leading the way into anew world of configurable, dynamic systems.

Cooper ative Configuration

Weve taked about users and devel opers configuring dynamic gpplications. But what happensif you let gpplications
configure each other—software that adaptsitsdlf to its environment? Unplanned, spur-of-the-moment configuration
of existing softwareis apowerful concept.

Operating systems aready configure themselves to hardware as they boot, and Web browsers update themselves
with new components autometicaly.

Y our larger gpplications probably aready have issueswith handling different versons of dataand different releases of
libraries and operating systems. Perhaps amore dynamic approach will help.

Don't Write Dodo-Code

Without metadata, your code is not as adaptable or flexible asit could be. Isthisabad thing? Well, out herein the
real world, speciesthat don't adapt die.

The dodo didn't adapt to the presence of humans and their livestock on the idand of Mauritius, and quickly became
extinct.[2] It wasthefirst documented extinction of a species at the hand of man.

[2] 1t didn't help that the settlers beat the placid (read stupid) birds to death with clubs for sport.

Don't let your project (or your career) go the way of the dodo.

Related sectionsinclude:

Orthogondlity

Revershility

Domain Languages

The Power of Plain Text

Challenges

For your current project, consider how much of the gpplication might be moved out of the program itself to

metadata. What would the resultant "engine’ ook like? Would you be able to reuse that engine in the context
of adifferent gpplication?

Exercises

28.
Which of the following things would be better represented
as code within aprogram, and which externdly as metadata?

1.

Communication port assgnments

An editor's support for highlighting the syntax of
various languages

An editor's support for different graphic devices

A state machinefor aparser or scanner

Sample vaues and resultsfor usein unit testing

| | @ve RuBoard

| | @ve RuBoard HE

Temporal Coupling

What is temporal coupling al about, you may ask. It's about time.

Timeis an often ignored aspect of software architectures. The only time that preoccupies us is the time on the schedul e, the time left
until we ship—but thisis not what we're talking about here. Instead, we are talking about the role of time as a design element of the
software itself. There are two aspects of time that are important to us: concurrency (things happening at the same time) and ordering
(the relative positions of thingsin time).

We don't usualy approach programming with either of these aspectsin mind. When people first sit down to design an architecture
or write aprogram, things tend to be linear. That's the way most people think—do this and then always do that. But thinking this
way leads to temporal coupling: coupling in time. Method A must always be called before method B; only one report can be run at
atime; you must wait for the screen to redraw before the button click is received. Tick must happen before tock.

This approach is not very flexible, and not very realistic.

We need to allow for concurrency[3] and to think about decoupling any time or order dependencies. In doing so, we can gain
flexibility and reduce any time-based dependenciesin many areas of development: workflow analysis, architecture, design, and
deployment.

[3] We won't go into the details of concurrent or parallel programming here; a good computer science textbook should cover the basics, including
scheduling, deadlock, star-vation, mutual exclusion/semaphores, and so on.

Wor kflow

On many projects, we need to model and analyze the users workflows as part of requirements analysis. We'd like to find out what
can happen at the same time, and what must happen in a strict order. One way to do thisisto capture their description of workflow
using a notation such as the UML activity diagram.[4]

[4] For more information on all of the UML diagram types, see [FS97].

An activity diagram consists of a set of actions drawn as rounded boxes. The arrow leaving an action leads to either another action
(which can start once the first action completes) or to athick line called a synchronization bar. Once all the actions leading into a
synchronization bar are complete, you can then proceed along any arrows leaving the bar. An action with no arrows leading into it
can be started at any time.

Y ou can use activity diagrams to maximize paralelism by identifying activities that could be performed in parallel, but aren't.
Tip 39

Analyze Workflow to Improve Concurrency

For instance, in our blender project (Exercise 17, page 119), users may initially describe their current workflow as follows.
1.

Open blender

Open pifia colada mix

Put mix in blender

Measure 1/2 cup white rum

Pour in rum

Add 2 cups of ice

Close blender

Liquefy for 2 minutes

Open blender
10.

Get glasses
11.

Get pink umbrellas
12.

Serve

Even though they describe these actions serialy, and may even perform them serially, we notice that many of them could be
performed in parallel, aswe show in the activity diagram in Figure 5.2 on the next page.

Figure5.2. UML activity diagram: making a pifia colada

Measure
rim

2. Open mix 1. Open
blender

Acdd two 5 Pour
cups fce " in ram
|

¥
Close
7.
blender

Get pink

1.
umbrellas
8. Liguefy
Get

glasses

Open
" blender

1

It can be eye-opening to see where the dependenciesredlly exist. In thisinstance, the top-level tasks (1, 2, 4, 10, and 11) can all
happen concurrently, up front. Tasks 3, 5, and 6 can happen in parallel later.

If you were in a pifia colada-making contest, these optimizations may make all the difference.

Architecture

We wrote an On-Line Transaction Processing (OLTP) system afew years ago. At itssimplest, all the system had to do was read a
request and process the transaction against the database. But we wrote a three-tier, multiprocessing distributed application: each
component was an independent entity that ran concurrently with all other components. While this sounds like more work, it wasn't:
taking advantage of temporal decoupling madeit easier to write. Let's take a closer look at this project.

The system takes in requests from alarge number of data communication lines and processes transactions against a back-end
database.

The design addresses the following constraints:

Database operations take a relatively long time to compl ete.

For each transaction, we must not block communication services while a database transaction is being processed.

Database performance suffers with too many concurrent sessions.

Multiple transactions are in progress concurrently on each dataline.

The solution that gave us the best performance and cleanest architecture looked something like Figure 5.3.

Figure5.3. OL TP architecture overview

Iripuat

task #1
App.
App'n logic #1 \ Database

Input Datahase
task #2 handler

Dueue App. H_,-f" Queue
logic #n

Input
task #n

Each box represents a separate process; processes communicate viawork queues. Each input process monitors one incoming
communication line, and makes requests to the application server. All requests are asynchronous:. as soon as the input process
makes its current request, it goes back to monitoring the line for more traffic. Similarly, the application server makes requests of the
database process,[5] and is notified when the individual transaction is complete.

[5] Even though we show the database as a single, monolithic entity, it is not. The database software is partitioned into several processes and client
threads, but thisis handled internally by the database software and isn't part of our example.

This example also shows away to get quick and dirty load balancing among multiple consumer processes: the hungry consumer
moddl.

In ahungry consumer model, you replace the central scheduler with anumber of independent consumer tasks and a centralized work
gueue. Each consumer task grabs a piece from the work queue and goes on about the business of processing it. As each task
finishesitswork, it goes back to the queue for some more. Thisway, if any particular task gets bogged down, the others can pick up
the slack, and each individual component can proceed at its own pace. Each component istemporally decoupled from the others.

Tip 40

Design Using Services

Instead of components, we have really created services—independent, concurrent objects behind well-defined, consistent interfaces.
Design for Concurrency
The rising acceptance of Java as a platform has exposed more devel opers to multithreaded programming. But programming with

threads imposes some design constraints—and that's a good thing. Those constraints are actually so helpful that we want to abide
by them whenever we program. It will help us decouple our code and fight programming by coincidence.

With linear code, it's easy to make assumptions that lead to sloppy programming. But concurrency forces you to think through
things a bit more carefully—you're not alone at the party anymore. Because things can now happen at the "sametime," you may
suddenly see some time-based dependencies.

To begin with, any global or static variables must be protected from concurrent access. Now may be a good time to ask yourself why
you need aglobal variable in the first place. In addition, you need to make sure that you present consistent state information,
regardless of the order of calls. For example, when isit valid to query the state of your object? If your object isin aninvalid state
between certain cals, you may be relying on a coincidence that no one can call your object at that point in time.

Suppose you have a windowing subsystem where the widgets are first created and then shown on the display in two separate steps.
You aren't allowed to set state in the widget until it is shown. Depending on how the code is set up, you may be relying on the fact
that no other object can use the created widget until you've shown it on the screen.

But this may not be true in a concurrent system. Objects must always be in avalid state when called, and they can be called at the
most awkward times. Y ou must ensure that an object isin avalid state any time it could possibly be called. Often this problem
shows up with classes that define separate constructor and initialization routines (where the constructor doesn't |eave the object in
aninitialized state). Using class invariants, discussed in Design by Contract, will help you avoid thistrap.

Cleaner Interfaces

Thinking about concurrency and time-ordered dependencies can lead you to design cleaner interfaces as well. Consider the C library
routine strtok, which breaks a string into tokens.

The design of strtok isn't thread safe,[6] but that isn't the worst part: look at the time dependency. Y ou must make the first call to
strtok with the variable you want to parse, and all successive callswith aNULL instead. If you passin anon-NULL value, it restarts
the parse on that buffer instead. Without even considering threads, suppose you wanted to use strtok to parse two separate strings

at the sametime:

[6] It uses static data to maintain the current position in the buffer. The static data isn't protected against concurrent access, so it isn't thread safe. In
addition, it clobbers the first argument you pass in, which can lead to some nasty surprises.

char buf 1[BUFSI Z] ;
char buf 2[BUFSI Z] ;
char *p, *q;

strcpy(bufl, "this is a test");
strcpy(buf2, "this ain't gonna work");

p strtok(bufl, " ");

q strtok(buf2, " ");

while (p & q) {
printf("% %\n", p, q);
p = strtok(NULL, " ");
q = strtok(NULL, " ");

}

The code as shown will not work: there isimplicit state retained in strtok between calls. Y ou have to use strtok on just one buffer at
atime.

Now in Java, the design of a string parser has to be different. It must be thread safe and present a consistent state.

new StringTokenizer("this is a test");
new StringTokeni zer("this test will work");

StringTokeni zer stl
StringTokeni zer st2

while (stl.hasMoreTokens() && st2 hasMreTokens()) {
System out . printl n(st 1. next Token());
System out . printl n(st2. next Token());

}

StringTokenizer isamuch cleaner, more maintainable, interface. It contains no surprises, and won't cause mysterious bugs in the
future, as strtok might.

Tip41

Always Design for Concurrency

Deployment

Once you've designed an architecture with an element of concurrency, it becomes easier to think about handling many concurrent
services: the model becomes pervasive.

Now you can be flexible as to how the application is deployed: standalone, client-server, or n-tier. By architecting your system as
independent services, you can make the configuration dynamic as well. By planning for concurrency, and decoupling operationsin
time, you have all these options—including the stand-alone option, where you can choose not to be concurrent.

Going the other way (trying to add concurrency to a nonconcurrent application) is much harder. If we design to allow for
concurrency, we can more easily meet scalability or performance requirements when the time comes—and if the time never comes,
we still have the benefit of a cleaner design.

Isn't it about time?

Related sectionsinclude:

Design by Contract

Programming by Coincidence

Challenges

How many tasks do you perform in parallel when you get ready for work in the morning? Could you express thisin a UML
activity diagram? Can you find some way to get ready more quickly by increasing concurrency?

| | @ve RuBoard

| | @ve RuBoard

It'sJust aView

Sill, a man hears

What he wants to hear

And disregards the rest

Lalala...

Simon and Garfunkd, " The Boxer"

Early on we are taught not to write a program as a single big chunk, but that we should "divide and conquer" and separate a
program into modules. Each module has its own responsibilities; in fact, a good definition of amodule (or class) isthat it hasa
single, well-defined responsibility.

But once you separate a program into different modules based on responsibility, you have a new problem. At runtime, how do the
objects talk to each other? How do you manage the logical dependencies between them? That is, how do you synchronize changes
in state (or updates to data values) in these different objects? It needs to be done in a clean, flexible manner—we don't want them to
know too much about each other. We want each module to be like the man in the song and just hear what it wants to hear.

Well start off with the concept of an event. An event is simply a special message that says "something interesting just happened”
(interesting, of course, liesin the eye of the beholder). We can use events to signal changes in one object that some other object
may be interested in.

Using eventsin this way minimizes coupling between those objects—the sender of the event doesn't need to have any explicit
knowledge of the receiver. In fact, there could be multiple receivers, each one focused on its own agenda (of which the sender is
blissfully unaware).

We need to exercise some care in using events, however. In an early version of Java, for example, one routine received all the events
destined for a particular application. Not exactly the road to easy maintenance or evolution.

Publish/Subscribe

Why isit bad to push al the events through a single routine? It violates object encapsul ation—that one routine now hasto have
intimate knowledge of the interactions among many objects. It aso increases the coupling—and we're trying to decrease coupling.
Because the objects themselves have to have knowledge of these events as well, you are probably going to violate the DRY
principle, orthogonality, and perhaps even sections of the Geneva Convention. Y ou may have seen this kind of code—it is usually
dominated by a huge case statement or multiway if-then. We can do better.

Objects should be able to register to receive only the events they need, and should never be sent events they don't need. We don't
want to spam our objects! Instead, we can use a publish/subscribe protocol, illustrated using the UML sequence diagram in Figure
54 on the next page.[7]

[7] See also the Observer pattern in [GHJV95] for more information.

Figure 5.4. Publish/subscribe protocol

Subscriber Subscriber .
one Wo Fublisher

| | 1

| register - |
| notify* |
| |

| | register - |

| - notify* | |

| [|

| | notify™ |

| unsubscribe | - |

| | |
—

A sequence diagram shows the flow of messages among several objects, with objects arranged in columns. Each message is shown
as alabeled arrow from the sender's column to the receiver's column. An asterisk in the label means that more than one message of
this type can be sent.

If we are interested in certain events generated by a Publisher, al we haveto do is register ourselves. The Publisher keeps track of
all interested Subscriber objects; when the Publisher generates an event of interest, it will call each Subscriber in turn and notify
them that the event has occurred.

There are several variations on this theme—mirroring other communication styles. Objects may use publish/subscribe on a
peer-to-peer basis (as we saw above); they may use a "software bus* where a centralized object maintains the database of listeners
and dispatches messages appropriately. Y ou might even have a scheme where critical events get broadcast to all
listeners—registered or not. One possible implementation of eventsin adistributed environment isillustrated by the CORBA Event
Service, described in the box on the following page.

We can use this publish/subscribe mechanism to implement a very important design concept: the separation of amodel from views
of the modedl. Let's start with a GUI-based example, using the Smalltalk design in which this concept was born.

M odel-View-Controller

Suppose you have a spreadsheet application. In addition to the numbers in the spreadsheet itself, you also have a graph that
displays the numbers as a bar chart and a running total dialog box that shows the sum of a column in the spreadsheet.

The CORBA Event Service

The CORBA Event Service dlows participating objects to send and recelve event notificationsviaa
common bus, the event channel. The event channe arbitrates event handling, and a so decouples event
producers from event consumers. It worksin two basic ways. push and pull.

In push mode, event suppliersinform the event channe that an event has occurred. The channd then
automatically distributes that event to al client objectsthat have registered interest.

In pull mode, clients periodicaly poll the event channe, which in turn pollsthe supplier that offers event
data corresponding to the request.

Although the CORBA Event Service can be used to implement dl of the event moded s discussed in this
section, you can dso view it asadifferent anima. CORBA facilities communi cation among objects
written in different programming languages running on geographically dispersed machineswith different
architectures. Sitting on top of CORBA, the event service give you a decoupled way of interacting with
gpplications around the world, written by people you've never met, using programming languages you'd
rather not know abouit.

Obviously, we don't want to have three separate copies of the data. So we create a model—the dataitself, with common operations
to manipulate it. Then we can create separate views that display the datain different ways: as a spreadsheet, as agraph, or in atotals
box. Each of these views may have its own controller. The graph view may have a controller that allows you to zoom in or out, or
pan around the data, for example. None of this affects the dataitself, just that view.

Thisisthe key concept behind the Model-View-Controller (MV CO idiom: separating the model from both the GUI that representsiit
and the controls that manage the view.[8]

[8] The view and controller are tightly coupled, and in some Implementations of MV C the view and controller are a single component.

By doing so, you can take advantage of some interesting possibilities. Y ou can support multiple views of the same data model. Y ou
can use common viewers on many different data models. Y ou can even support multiple controllers to provide nontraditional input
mechanisms.

Tip 42
Separate Views from Models

By loosening the coupling between the model and the view/controller, you buy yourself alot of flexibility at low cost. In fact, this
technique is one of the most important ways of maintaining reversibility (see Reversihility).

JavaTreeView

A good example of an MV C design can be found in the Java tree widget. The tree widget (which displays a clickable, traversable
tree) isactually aset of several different classes organized in an MV C pattern.

To produce a fully functional tree widget, all you need to do is provide a data source that conformsto the TreeModel interface. Y our
code now becomes the model for the tree.

Theview is created by the TreeCellRenderer and TreeCellEditor classes, which can be inherited from and customized to provide
different colors, fonts, and iconsin the widget. JTree acts as the controller for the tree widget and provides some general viewing
functionality.

Because we have decoupled the model from the view, we simplify the programming a great deal. Y ou don't have to think about
programming atree widget anymore. Instead, you just provide a data source.

Suppose the vice president comes up to you and wants a quick application that |ets her navigate the company's organizational chart,
which is held in alegacy database on the mainframe. Just write awrapper that takes the mainframe data, presentsit asa TreeModel,
and voila: you have afully navigable tree widget.

Now you can get fancy and start using the viewer classes; you can change how nodes are rendered, and use special icons, fonts, or
colors. When the VP comes back and says the new corporate standards dictate the use of a Skull and Crossbonesicon for certain
employees, you can make the changes to TreeCellRenderer without touching any other code.

Beyond GUIs

While MV C istypically taught in the context of GUI development, it isreally a general-purpose programming technique. Theview is
an interpretation of the model (perhaps a subset)—it doesn't need to be graphical. The controller is more of a coordination
mechanism, and doesn't have to be related to any sort of input device.

Modd. The abstract data model representing the target object. The model has no direct knowledge of any views or
controllers.

View. A way to interpret the model. It subscribes to changes in the model and logical events from the controller.

Controller. A way to control the view and provide the model with new data. It publishes events to both the model and the
view.

Let'slook at anongraphical example.

Baseball isaunique institution. Where else can you learn such gems of trivia as "this has become the highest-scoring game played
on aTuesday, intherain, under artificial lights, between teams whose names start with avowel 7' Suppose we were charged with
developing software to support those intrepid announcers who must dutifully report on the scores, the statistics, and the trivia.

Clearly we need information on the game in progress—the teams playing, the conditions, the player at bat, the score, and so on.
These facts form our models; they will be updated as new information arrives (a pitcher is changed, a player strikes out, it starts
raning...).

Well then have a number of view objects that use these models. One view might look for runs so it can update the current score.
Another may receive notifications of new batters, and retrieve a brief summary of their year-to-date statistics. A third viewer may
look at the data and check for new world records. We might even have atriviaviewer, responsible for coming up with those weird
and useless facts that thrill the viewing public.

But we don't want to flood the poor announcer with all of these views directly. Instead, we'll have each view generate notifications
of "interesting" events, and let some higher-level abject schedule what gets shown.[9]

[9] The fact that a plane flies overhead probably isn't interesting unless it's the 100th plane to fly overhead that night.

These viewer objects have suddenly become models for the higher-level object, which itself might then be amodel for different
formatting viewers. One formatting viewer might create the teleprompter script for the announcer, another might generate video
captions directly on the satellite uplink, another might update the network's or team's Web pages (see Figure 5.5).

Figure5.5. Baseball reporting, Viewer s subscribe to models.

Secore
. collector [+, TV feed
- generator
Scores | w.
A\ Batter)
stats e S »*
Display Web page
N gt
filter formatter
Records | ".
- p
Conditions
s \ Tele-
rompter
Trivia » prompt
£ SUBRLrEad W b

model - viewer

Thiskind of model-viewer network isacommon (and valuable) design technique. Each link decouples raw data from the events that
created it—each new viewer is an abstraction. And because the relationships are a network (not just alinear chain), we have alot of
flexibility. Each model may have many viewers, and one viewer may work with multiple models.

In advanced systems such as this one, it can be handy to have debugging views—specialized views that show you in-depth details
of the model. Adding afacility to trace individual events can be a great time saver aswell.

Still Coupled (After All These Years)

Despite the decrease in coupling we have achieved, listeners and event generators (subscribers and publishers) still have some
knowledge of each other. In Java, for instance, they must agree on common interface definitions and calling conventions.

In the next section, we'll look at ways of reducing coupling even further by using aform of publish and subscribe where none of the
participants need know about each other, or call each other directly.

Related sectionsinclude:

Orthogonality

Reversihility

Decoupling and the Law of Demeter

Blackboards

It's All Writing

Exercises

| | @ve RuBoard

29.

Suppose you have an airline reservation system that includes
the concept of aflight:

public interface Flight {
/! Return false if flight full
publ i c bool ean
addPassenger (Passenger p);
public void
addToWi t Li st (Passenger p);
public int getFlightCapacity();
public int getNunPassengers();
}

If you add a passenger to the wait list, they'll be put on the
flight automatically when an opening becomes available.

There's amassive reporting job that goes through looking for
overbooked or full flights to suggest when additional flights
might be scheduled. It worksfine, but it takes hoursto run.

Wed like to have alittle more flexibility in processing wait-list
passengers, and we've got to do something about that big
report—it takes too long to run. Use the ideas from this
section to redesign thisinterface.

| | @ve RuBoard

Blackboards

The writing ison thewall...

Y ou may not usually associate elegance with police detectives, picturing instead some sort of doughnut and coffee cliché. But
consider how detectives might use a blackboard to coordinate and solve a murder investigation.

Suppose the chief inspector starts off by setting up alarge blackboard in the conference room. On it, he writes a single question:

H.DUMPTY (MALE, EGG): ACCIDENT OR MURDER?

Did Humpty redlly fall, or was he pushed? Each detective may make contributions to this potential murder mystery by adding facts,
statements from witnesses, any forensic evidence that might arise, and so on. As the data accumulates, a detective might notice a
connection and post that observation or speculation as well. This process continues, across al shifts, with many different people
and agents, until the case is closed. A sample blackboard is shown in Figure 5.6 on the next page.

Figure 5.6. Someone found a connection between Humpty's gambling debts and the phonelogs. Perhaps
he was getting threatening phone calls.
H. Dumpty (Male, Egg): Accident or Murder?

Photos Shell fragments Phone logs
King's men Gambling debts<"
Eyewitnesses Graffiti Wife's alibi

Detective |

Some key features of the blackboard approach are;

None of the detectives needs to know of the existence of any other detective—they watch the board for new information,
and add their findings.

The detectives may be trained in different disciplines, may have different levels of education and expertise, and may not
even work in the same precinct. They share a desire to solve the case, but that's all.

Different detectives may come and go during the course of the process, and may work different shifts.

There are no restrictions on what may be placed on the blackboard. It may be pictures, sentences, physical evidence, and
so on.

We've worked on a number of projects that involved aworkflow or distributed data gathering process. With each, designing a
solution around a simple blackboard model gave us a solid metaphor to work with: all of the features listed above using detectives
are just as applicable to objects and code modules.

A blackboard system lets us decouple our objects from each other completely, providing aforum where knowledge consumers and
producers can exchange data anonymously and asynchronously. As you might guess, it also cuts down on the amount of code we
have to write.

Blackboard I mplementations

Computer-based blackboard systems were originally invented for use in artificial intelligence applications where the problems to be
solved were large and complex—speech recognition, knowledge-based reasoning systems, and so on.

Modern distributed blackboard-like systems such as JavaSpaces and T Spaces [URL 50, URL 25] are based on amodel of key/value
pairsfirst popularized in Linda [CG90], where the concept was known as tuple space.

With these systems, you can store active Java objects—not just data—on the blackboard, and retrieve them by partial matching of
fields (viatemplates and wildcards) or by subtypes. For example, suppose you had a type Author, which is a subtype of Person.

Y ou could search a blackboard containing Person objects by using an Author template with alastName value of " Shakespeare.”
You'd get Bill Shakespeare the author, but not Fred Shakespeare the gardener.

The main operations in JavaSpaces are;

Name Function

read Search for and retrieve data from the space.

write Put an item into the space.

take Similar to read, but removes the item from the space as well.
notify Set up anotification to occur whenever an object iswritten that

matches the template.

T Spaces supportsasimilar set of operations, but with different names and dlightly different semantics. Both systems are built like a
database product; they provide atomic operations and distributed transactions to ensure data integrity.

Since we can store objects, we can use a blackboard to design algorithms based on a flow of objects, not just data. It's asif our
detectives could pin people to the blackboard—witnesses themselves, not just their statements. Anyone can ask a witness
guestions in the pursuit of the case, post the transcript, and move that witness to another area of the blackboard, where he might
respond differently (if you allow the witness to read the blackboard too).

A big advantage of systems such asthese is that you have a single, consistent interface to the blackboard. When building a
conventional distributed application, you can spend agreat deal of time crafting unique API calls for every distributed transaction
and interaction in the system. With the combinatorial explosion of interfaces and interactions, the project can quickly become a
nightmare.

Organizing Your Blackboard

When the detectives work on large cases, the blackboard may be- come cluttered, and it may become
difficult to locate data on the board. The solution isto partition the blackboard and start to organize the
data on the blackboard somehow.

Different software sysems handle this partitioning in different ways, some usefairly flat zones or
interests groups, while others adopt a more hierarchicd tredike structure.

The blackboard style of programming removes the need for so many interfaces, making for a more elegant and consistent system.

Application Example

Suppose we are writing a program to accept and process mortgage or loan applications. The laws that govern this area are odiously
complex, with federal, state, and local governments all having their say. The lender must prove they have disclosed certain things,
and must ask for certain information—but must not ask certain other questions, and so on, and so on.

Beyond the miasma of applicable law, we aso have the following problems to contend with.

Thereis no guarantee on the order in which data arrives. For instance, queries for a credit check or title search may take a
substantial amount of time, while items such as name and address may be available immediately.

Data gathering may be done by different people, distributed across different offices, in different time zones.

Some data gathering may be done automatically by other systems. This data may arrive asynchronously as well.

Nonetheless, certain data may still be dependent on other data. For instance, you may not be able to start the title search
for acar until you get proof of ownership or insurance.

Arriva of new data may raise new questions and policies. Suppose the credit check comes back with aless than glowing
report; now you need these five extraforms and perhaps a blood sample.

Y ou can try to handle every possible combination and circumstance using a workflow system. Many such systems exist, but they
can be complex and programmer intensive. As regulations change, the work-flow must be reorganized: people may have to change
their procedures and hard-wired code may have to be rewritten.

A blackboard, in combination with a rules engine that encapsulates the legal requirements, is an elegant solution to the difficulties
found here. Order of data arrival isirrelevant: when afact is posted it can trigger the appropriate rules. Feedback is easily handled as
well: the output of any set of rules can post to the blackboard and cause the triggering of yet more applicable rules.

Tip 43

Use Blackboards to Coordinate Workflow

We can use the blackboard to coordinate disparate facts and agents, while still maintaining independence and even isolation among
participants.

Y ou can accomplish the same results with more brute-force methods, of course, but you'll have amore brittle system. When it
bresks, al the king's horses and all the king's men might not get your program working again.

Related sectionsinclude:

The Power of Plain Text

It'sJdust aView

Challenges

Do you use blackboard systems in the real world—the message board by the refrigerator, or the big whiteboard at work?
What makes them effective? Are messages ever posted with a consistent format? Does it matter?

Exercises

30.
For each of the following applications, would a blackboard system
be appropriate or not? Why?

1.

Image processing. You'd like to have anumber of parallel
processes grab chunks of an image, process them, and put

the completed chunk back.

2.
Group calendaring. You've got people scattered across
the globe, in different time zones, and speaking different
languages, trying to schedule a meeting.

3.

Network monitoringtool. The system gathers
performance statistics and collects trouble reports. Y ou'd
like to implement some agents to use thisinformation to
look for trouble in the system.

| | @ve RuBoard

| | @ve RuBoard

Chapter 6. While You Are Coding

Conventiona wisdom says that once a project isin the coding phase, the work is mostly mechanical, transcribing the design into
executable statements. We think that this attitude is the single biggest reason that many programs are ugly, inefficient, poorly
structured, unmaintainable, and just plain wrong.

Coding is not mechanical. If it were, all the CASE tools that people pinned their hopes on in the early 1980s would have replaced
programmers long ago. There are decisions to be made every minute—decisions that require careful thought and judgment if the
resulting program is to enjoy along, accurate, and productive life.

Developers who don't actively think about their code are programming by coincidence—the code might work, but there's no
particular reason why. In Programming by Coincidence, we advocate a more positive involvement with the coding process.

While most of the code we write executes quickly, we occasionally devel op algorithms that have the potential to bog down even the
fastest processors. In Algorithm Speed, we discuss ways to estimate the speed of code, and we give some tips on how to spot
potential problems before they happen.

Pragmatic Programmers think critically about all code, including our own. We constantly see room for improvement in our programs
and our designs. In Refactoring, we look at techniques that help us fix up existing code even while we're in the midst of a project.

Something that should be in the back of your mind whenever you're producing code isthat you'll someday haveto test it. Make
code easy to test, and you'll increase the likelihood that it will actually get tested, a thought we develop in Code That's Easy to Test.

Finally, in Evil Wizards, we suggest that you should be careful of tools that write reams of code on your behalf unless you
understand what they're doing.

Most of us can drive acar largely on autopilot—we don't explicitly command our foot to press a pedal, or our arm to turn the
wheel—we just think "slow down and turn right." However, good, safe drivers are constantly reviewing the situation, checking for
potential problems, and putting themselves into good positions in case the unexpected happens. The same is true of coding—it may
be largely routine, but keeping your wits about you could well prevent a disaster.

| | @ve RuBoard

| | @ve RuBoard

Programming by Coincidence

Do you ever watch old black-and-white war movies? The weary soldier advances cautiously out of the brush. There'saclearing
ahead: arethere any land mines, or isit safe to cross? There aren't any indications that it's a minefield—no signs, barbed wire, or
craters. The soldier pokes the ground ahead of him with his bayonet and winces, expecting an explosion. Thereisn't one. So he
proceeds painstakingly through the field for awhile, prodding and poking as he goes. Eventually, convinced that the field is safe, he
straightens up and marches proudly forward, only to be blown to pieces.

The soldier'sinitia probes for mines revealed nothing, but this was merely lucky. He was led to a fal se conclusion—with disastrous
results.

As developers, we also work in minefields. There are hundreds of traps just waiting to catch us each day. Remembering the soldier's
tale, we should be wary of drawing false conclusions. We should avoid programming by coincidence—relying on luck and
accidental successes— in favor of programming deliberately.

How to Program by Coincidence

Suppose Fred is given a programming assignment. Fred types in some code, triesit, and it seemsto work. Fred typesin some more
code, triesit, and it still seemsto work. After several weeks of coding this way, the program suddenly stops working, and after hours
of trying to fix it, he still doesn't know why. Fred may well spend a significant amount of time chasing this piece of code around
without ever being able to fix it. No matter what he does, it just doesn't ever seem to work right.

Fred doesn't know why the code is failing because he didn't know why it worked in the first place. It seemed to work, given the
limited "testing" that Fred did, but that was just a coincidence. Buoyed by false confidence, Fred charged ahead into oblivion. Now,
most intelligent people may know someone like Fred, but we know better. We don't rely on coincidences—do we?

Sometimes we might. Sometimes it can be pretty easy to confuse a happy coincidence with a purposeful plan. Let'slook at afew
examples.

Accidents of Implementation

Accidents of implementation are things that happen simply because that's the way the codeis currently written. Y ou end up relying
on undocumented error or boundary conditions.

Suppose you call aroutine with bad data. The routine responds in a particular way, and you code based on that response. But the
author didn't intend for the routine to work that way—it was never even considered. When the routine gets "fixed," your code may
break. In the most extreme case, the routine you called may not even be designed to do what you want, but it seems to work okay.
Calling thingsin the wrong order, or in the wrong context, is arelated problem.

paint(g);

i nval i date();

val i date();

reval i date();
repaint();

pai nt | mredi atel y(r);

Hereit looks like Fred is desperately trying to get something out on the screen. But these routines were never designed to be called
this way; although they seem to work, that's really just a coincidence.

To add insult to injury, when the component finally does get drawn, Fred won't try to go back and take out the spurious calls. "It
works now, better leave well enough aone...."

It's easy to be fooled by this line of thought. Why should you take the risk of messing with something that's working? Well, we can
think of several reasons:

It may not really be working—it might just look likeit is.

The boundary condition you rely on may be just an accident. In different circumstances (a different screen resolution,
perhaps), it might behave differently.

Undocumented behavior may change with the next release of the library.

Additional and unnecessary calls make your code slower.

Additional calls aso increase therisk of introducing new bugs of their own.

For code you write that otherswill call, the basic principles of good modularization and of hiding implementation behind small,
well-documented interfaces can all help. A well-specified contract (see Design by Contract) can help eliminate misunderstandings.

For routines you call, rely only on documented behavior. If you can't, for whatever reason, then document your assumption well.

Accidents of Context

Y ou can have "accidents of context" aswell. Suppose you are writing a utility module. Just because you are currently coding for a
GUI environment, does the module have to rely on a GUI being present? Are you relying on English-speaking users? Literate users?
What else are you relying on that isn't guaranteed?

Implicit Assumptions

Coincidences can mislead at al levels—from generating requirements through to testing. Testing is particularly fraught with false
causalities and coincidental outcomes. It's easy to assumethat X causes Y, but aswe said in Debugging: don't assume it, proveit.

At al levels, people operate with many assumptions in mind—»but these assumptions are rarely documented and are often in conflict
between different devel opers. Assumptions that aren't based on well-established facts are the bane of all projects.

Tip 44

Don't Program by Coincidence

How to Program Deliberately

We want to spend less time churning out code, catch and fix errors as early in the development cycle as possible, and create fewer
errorsto begin with. It helps if we can program deliberately:

Always be aware of what you are doing. Fred let things get slowly out of hand, until he ended up boiled, like the frog in
Stone Soup and Boiled Frogs.

Don't code blindfolded. Attempting to build an application you don't fully understand, or to use atechnology you aren't
familiar with, is an invitation to be misled by coincidences.

Proceed from a plan, whether that plan isin your head, on the back of a cocktail napkin, or on awall-sized printout from a
CASE tool.

Rely only on reliable things. Don't depend on accidents or assumptions. If you can't tell the difference in particular
circumstances, assume the worst.

Document your assumptions. Design by Contract, can help clarify your assumptionsin your own mind, aswell ashelp
communicate them to others.

Don't just test your code, but test your assumptions as well. Don't guess; actually try it. Write an assertion to test your
assumptions (see Assertive Programming). If your assertion is right, you have improved the documentation in your code. If
you discover your assumption is wrong, then count yourself lucky.

Prioritize your effort. Spend time on the important aspects; more than likely, these are the hard parts. If you don't have
fundamentals or infrastructure correct, brilliant bells and whistles will beirrelevant.

Don't be adlave to history. Don't let existing code dictate future code. All code can be replaced if it isno longer
appropriate. Even within one program, don't let what you've already done constrain what you do next—be ready to refactor
(see Refactoring). This decision may impact the project schedule. The assumption is that the impact will be less than the
cost of not making the change.[1]

[1] You can also go too far here. We once knew a developer who rewrote all source he was given because he had his own naming conventions.

So next time something seems to work, but you don't know why, make sure it isn't just a coincidence.

Related sectionsinclude:

Stone Soup and Boiled Frogs

Debugging

Design by Contract

Assertive Programming

Temporal Coupling

Refactoring

It's All Writing

Exercises

| | @ve RuBoard

31

32.

Can you identify some coincidencesin the following C code
fragment? Assume that this codeis buried deep in alibrary
routine.

fprintf (stderr, "Error,
continue?");
get s(buf);

This piece of C code might work some of the time, on some
machines. Then again, it might not. What's wrong?

[* Truncate string to its |ast
maxl en chars */
void string tail (char *string,
int maxlen) ({
int len = strlen(string);
if (len > maxlen) {
strcpy(string, string + (len
- maxlen));
}
}

This code comes from a general-purpose Java tracing suite.
The function writes a string to alog file. It passesits unit
test, but fails when one of the Web developers usesit. What
coincidence doesit rely on?

public static void debug(String
s) throws | OException {
FileWiter fw= new FileWiter(
"debug. | 0og", true);
fwwite(s);
fw flush();
fw close();

}

| | @ve RuBoard

Algorithm Speed

In Estimating, we talked about estimating things such as how long it takes to walk across town, or how long a project will take to
finish. However, there is another kind of estimating that Pragmatic Programmers use admost daily: estimating the resources that
algorithms use—time, processor, memory, and so on.

Thiskind of estimating is often crucial. Given a choice between two ways of doing something, which do you pick? Y ou know how
long your program runs with 1,000 records, but how will it scale to 1,000,000? What parts of the code need optimizing?

It turns out that these questions can often be answered using common sense, some analysis, and away of writing approximations
called the "big O" notation.

What Do We Mean by Estimating Algorithms?

Most nontrivia algorithms handle some kind of variable input—sorting n strings, inverting an mx n matrix, or decrypting a message
with an n-bit key. Normally, the size of thisinput will affect the algorithm: the larger the input, the longer the running time or the more
memory used.

If the relationship were always linear (so that the time increased in direct proportion to the value of n), this section wouldn't be
important. However, most significant algorithms are not linear. The good newsis that many are sublinear. A binary search, for
example, doesn't need to look at every candidate when finding a match. The bad newsis that other algorithms are considerably
worse than linear; runtimes or memory requirementsincrease far faster than n. An algorithm that takes a minute to process ten items
may take alifetime to process 100.

We find that whenever we write anything containing loops or recursive calls, we subconsciously check the runtime and memory
requirements. Thisisrarely aformal process, but rather a quick confirmation that what we're doing is sensible in the circumstances.
However, we sometimes do find ourselves performing a more detailed analysis. That's when the O() notation comes in useful.

The O() Notation

The O() notation is amathematical way of dealing with approximations. When we write that a particular sort routine sorts n records
in O(n2) time, we are simply saying that the worst-case time taken will vary asthe square of n. Double the number of records, and the
timewill increase roughly fourfold. Think of the O as meaning on the order of. The O() notation puts an upper bound on the value of
the thing we're measuring (time, memory, and so on). If we say afunction takes O(n2) time, then we know that the upper bound of
thetime it takeswill not grow faster than n2. Sometimes we come up with fairly complex O() functions, but because the highest-order
term will dominate the value as n increases, the convention isto remove al low-order terms, and not to bother showing any constant
multiplying factors. O(n2/2+ 3n) isthe same as O(n2/2), which is equivalent to O(n2). Thisis actually awesakness of the O()
notation—one O(n2) algorithm may be 1,000 times faster than another O(n2) algorithm, but you won't know it from the notation.

Figure 6.1 shows several common O() notations you'll come across, along with a graph comparing running times of algorithmsin
each category. Clearly, things quickly start getting out of hand once we get over O(n2).

Figure6.1. Runtimes of various algorithms

O{C™): traveling salesman Ofn lgin)): heapsort

Ofn?): selection sort

®

|
|
]
|
|
1
I
|
I
|
1 O (n): sequential search
|
I
|

runtime

—— = =

FFFFFF O(lg(n)): binary search

Q1) array access

Some common 0() notations

(1) Constant (access element in array, simple
stalements)

O(lg(n)) Logarithmic (binary search) [The notation lg(n)
is shorthand for logs(n)]

0O(n) Linear (sequential search)

(nlg(n)) Worse than linear, but not much worse [aver-
age runtime ol quicksort, heapsort)

((n*) Square law (selection and insertion sorts)
O(n*) Cubic (multiplication of 2 n x n matrices)

O(C™) Exponential [traveling salesman problem, set
partitioning)

For example, suppose you've got aroutine that takes 1 sto process 100 records. How long will it take to process 1,000? If your code
is O(1), thenitwill ill take 1 s. If it's O(lg(n)), then you'll probably be waiting about 3 s. O(n) will show alinear increaseto 10 s, while
an O(n Ig(n)) will take some 33 s. If you're unlucky enough to have an O(n2) routine, then sit back for 100 swhile it does its stuff.
And if you're using an exponential algorithm O(2n), you might want to make a cup of coffee—your routine should finish in about
10263 years. Let us know how the universe ends.

The O() notation doesn't apply just to time; you can use it to represent any other resources used by an algorithm. For example, it is
often useful to be able to model memory consumption (see Exercise 35).

Common Sense Estimation

Y ou can estimate the order of many basic algorithms using common sense.

Simpleloops. If asimpleloop runsfrom 1 to n, then the algorithm islikely to be O(n)—time increases linearly with n.
Examplesinclude exhaustive searches, finding the maximum value in an array, and generating checksums.

Nested loops. If you nest aloop inside another, then your agorithm becomes O(mx n), where mand n are the two loops
limits. This commonly occurs in simple sorting algorithms, such as bubble sort, where the outer |oop scans each element in
the array in turn, and the inner loop works out where to place that element in the sorted result. Such sorting algorithms tend

to be O(n2).

Binary chop. If your algorithm halves the set of thingsit considers each time around the loop, then it islikely to be
logarithmic, O(Ig(n)) (see Exercise 37). A binary search of a sorted list, traversing abinary tree, and finding the first set bit in
amachine word can al be O(Ig(n)).

Divideand conquer. Algorithms that partition their input, work on the two halves independently, and then combine the
result can be O(n Ig(n)). The classic example is quicksort, which works by partitioning the datainto two halves and
recursively sorting each. Although technically O(n2), because its behavior degrades when it is fed sorted input, the
average runtime of quicksort is O(n Ig(n)).

Combinatoric. Whenever algorithms start looking at the permutations of things, their running times may get out of hand.
Thisis because permutationsinvolve factorials (thereare 5! =5 x 4 x 3 x 2 x 1 = 120 permutations of the digitsfrom 1t0 5).
Time acombinatoric algorithm for five elements: it will take six times longer to run it for six, and 42 times longer for seven.
Examples include algorithms for many of the acknowledged hard problems—the traveling salesman problem, optimally
packing things into a container, partitioning a set of numbers so that each set has the same total, and so on. Often,
heuristics are used to reduce the running times of these types of algorithms in particular problem domains.

Algorithm Speed in Practice

It's unlikely that you'll spend much time during your career writing sort routines. The onesin the libraries available to you will
probably outperform anything you may write without substantial effort. However, the basic kinds of algorithms we've described
earlier pop up time and time again. Whenever you find yourself writing a simple loop, you know that you have an O(n) algorithm. If
that loop contains an inner loop, then you're looking at O(m x n). Y ou should be asking yourself how large these values can get. If
the numbers are bounded, then you'll know how long the code will take to run. If the numbers depend on external factors (such as
the number of records in an overnight batch run, or the number of namesin alist of people), then you might want to stop and
consider the effect that large values may have on your running time or memory consumption.

Tip 45

Estimate the Order of Y our Algorithms

There are some approaches you can take to address potential problems. If you have an algorithm that is O(n2), try to find adivide
and conquer approach that will take you down to O(n Ig(n)).

If you're not sure how long your code will take, or how much memory it will use, try running it, varying the input record count or
whatever islikely to impact the runtime. Then plot the results. Y ou should soon get a good idea of the shape of the curve. Isit
curving upward, a straight line, or flattening off as the input size increases? Three or four points should give you an idea.

Also consider just what you're doing in the codeitself. A simple O(n2) loop may well perform better that a complex, O(n Ig(n)) one
for smdler values of n, particularly if the O(n Ig(n)) algorithm has an expensive inner loop.

In the middle of all thistheory, don't forget that there are practical considerations aswell. Runtime may look like it increases linearly
for small input sets. But feed the code millions of records and suddenly the time degrades as the system starts to thrash. If you test
a sort routine with random input keys, you may be surprised the first time it encounters ordered input. Pragmatic Programmerstry to
cover both the theoretical and practical bases. After all this estimating, the only timing that counts is the speed of your code,
running in the production environment, with real data.[2] Thisleadsto our next tip.

[2] In fact, while testing the sort algorithms used as an exercise for this section on a 64MB Pentium, the authors ran out of real memory while running
the radix sort with more than seven million numbers. The sort started using swap space, and times degraded dramatically.

Tip 46

Test Y our Estimates

If it'stricky getting accurate timings, use code profilers to count the number of times the different stepsin your agorithm get
executed, and plot these figures against the size of the input.

Best Isn't Always Best

Y ou also need to be pragmatic about choosing appropriate algorithms—the fastest one is not always the best for the job. Given a
small input set, a straightforward insertion sort will perform just as well as a quicksort, and will take you less time to write and debug.
Y ou also need to be careful if the algorithm you choose has a high setup cost. For small input sets, this setup may dwarf the running
time and make the algorithm inappropriate.

Also bewary of premature optimization. It's aways agood ideato make sure an algorithm really is a bottleneck before investing
your precious time trying to improveit.

Related sectionsinclude:

Estimating

Challenges

Every developer should have afed for how algorithms are designed and analyzed. Robert Sedgewick has written a series of
accessible books on the subject ([Sed83, SF96, Sed92] and others). We recommend adding one of his booksto your
collection, and making a point of reading it.

For those who like more detail than Sedgewick provides, read Donald Knuth's definitive Art of Computer Programming
books, which analyze awide range of agorithms [Knu97a, Knu97b, Knu98].

In Exercise 34, we look at sorting arrays of long integers. What is the impact if the keys are more complex, and the overhead
of key comparison is high? Does the key structure affect the efficiency of the sort algorithms, or is the fastest sort always
fastest?

Exercises

We have coded a set of simple sort routines, which can be
downloaded from our Web site

(http:/mww . pragmaticprogrammer.com). Run them on
various machines available to you. Do your figures follow the
expected curves? What can you deduce about the relative
speeds of your machines? What are the effects of various
compiler optimization settings? |'s the radix sort indeed linear?

The routine below prints out the contents of a binary tree.
Assuming the tree is balanced, roughly how much stack
space will the routine use while printing a tree of 1,000,000
elements? (Assume that subroutine calls impose no
significant stack overhead.)

voi d printTree(const Node *node) {
char buffer[1000];
if (node) {
print Tree(node- >l eft) ;
get NodeAsStri ng(node, buffer);

put s(buffer);
print Tree(node->ri ght);
}
}
36.
Can you see any way to reduce the stack requirements of the
routine in Exercise 35 (apart from reducing the size of the
buffer)?
37.

we claimed that a binary chop is O(lg(n)). Can you prove this?

| @ve Rusoard Crrevious et)

| | @ve RuBoard

Refactoring

Change and decay in all around | see ...
H.F.Lyte " AbideWith Me"

Asaprogram evolves, it will become necessary to rethink earlier decisions and rework portions of the code. This processis
perfectly natural. Code needs to evolve; it's not a static thing.

Unfortunately, the most common metaphor for software development is building construction (Bertrand Meyer [Mey97b] uses the
term " Software Construction"). But using construction as the guiding metaphor implies these steps:

1.

An architect draws up blueprints.
2.

Contractors dig the foundation, build the superstructure, wire and plumb, and apply finishing touches.
3.

The tenants move in and live happily ever after, calling building maintenance to fix any problems.

Well, software doesn't quite work that way. Rather than construction, software is more like gardening—it is more organic than
concrete. You plant many things in agarden according to an initial plan and conditions. Some thrive, others are destined to end up
as compost. Y ou may move plantings relative to each other to take advantage of the interplay of light and shadow, wind and rain.
Overgrown plants get split or pruned, and colors that clash may get moved to more aesthetically pleasing locations. Y ou pull weeds,
and you fertilize plantings that are in need of some extra help. Y ou constantly monitor the health of the garden, and make
adjustments (to the soil, the plants, the layout) as needed.

Business peopl e are comfortable with the metaphor of building construction: it is more scientific than gardening, it's repeatable,
there's arigid reporting hierarchy for management, and so on. But we're not building skyscrapers—we aren't as constrained by the
boundaries of physics and the real world.

The gardening metaphor is much closer to the realities of software development. Perhaps a certain routine has grown too large, or is
trying to accomplish too much—it needs to be split into two. Things that don't work out as planned need to be weeded or pruned.

Rewriting, reworking, and re-architecting code is collectively known as refactoring.

When Should You Refactor ?

When you come across a stumbling block because the code doesn't quite fit anymore, or you notice two things that should really be
merged, or anything else at all strikes you as being "wrong," don't hesitate to change it There's no time like the present. Any
number of things may cause code to qualify for refactoring:

Duplication. Y ou've discovered aviolation of the DRY principle (The Evils of Duplication).

Nonorthogonal design. Y ou've discovered some code or design that could be made more orthogonal (Orthogonality).

Outdated knowledge. Things change, requirements drift, and your knowledge of the problem increases. Code needs to
keep up.

Performance. Y ou need to move functionality from one area of the system to another to improve performance.

Refactoring your code—moving functionality around and updating earlier decisions—isreally an exercise in pain management.
Let'sfaceit, changing source code around can be pretty painful: it was almost working, and now it's really torn up. Many
developers are reluctant to start ripping up code just because it isn't quite right.

Real-World Complications

So you go to your boss or client and say, "This code works, but | need another week to refactor it."

We can't print their reply.

Time pressure is often used as an excuse for not refactoring. But this excuse just doesn't hold up: fail to refactor now, and there'll be
afar greater time investment to fix the problem down the road—when there are more dependencies to reckon with. Will there be more
time available then? Not in our experience.

Y ou might want to explain this principle to the boss by using a medical analogy: think of the code that needs refactoring as a
"growth." Removing it requiresinvasive surgery. Y ou can go in now, and take it out whileit is till small. Or, you could wait while it
grows and spreads—but removing it then will be both more expensive and more dangerous. Wait even longer, and you may lose the
patient entirely.

Tip 47

Refactor Early, Refactor Often

Keep track of the things that need to be refactored. If you can't refactor something immediately, make sure that it gets placed on the
schedule. Make sure that users of the affected code know that it is scheduled to be refactored and how this might affect them.

How Do You Refactor ?

Refactoring started out in the Smalltalk community, and, along with other trends (such as design patterns), has started to gain a
wider audience. But as atopic it is still fairly new; there isn't much published on it. The first major book on refactoring ([FBB+99)],
and also [URL 47]) is being published around the same time as this book.

At its heart, refactoring is redesign. Anything that you or others on your team designed can be redesigned in light of new facts,
deeper understandings, changing requirements, and so on. But if you proceed to rip up vast quantities of code with wild abandon,
you may find yourself in aworse position than when you started.

Clearly, refactoring is an activity that needs to be undertaken slowly, deliberately, and carefully. Martin Fowler offers the following
simpletips on how to refactor without doing more harm than good (see the box on in [FS97]):

1.

Don't try to refactor and add functionality at the sametime.

Make sure you have good tests before you begin refactoring. Run the tests as often as possible. That way you will know
quickly if your changes have broken anything.

Automatic Refactoring

Higtoricaly, Smdltalk users have dways enjoyed a class browser as part of the IDE. Not to be
confused with Web browsers, class browsers let users navigate through and examine class hierarchies
and methods.

Typicaly, class browsers allow you to edit code, creste new methods and classes, and so on. The next
variation onthisideaisthe refactoring browser.

A refactoring browser can semiautomatically perform common refactoring operations for you: splitting
up along routine into smaller ones, automatically propagating changes to method and variable names,
drag and drop to assist you in moving code, and so on.

Aswe write this book, this technology has yet to appear outside of the Smalltalk world, but thisislikely
to change at the same speed that Java changes—rapidly. In the meantime, the pioneering Small-talk
refactoring browser can befound onlinea [URL 20].

3.

Take short, deliberate steps. move afield from one class to another, fuse two similar methods into a superclass. Refactoring
often involves making many localized changes that result in alarger-scale change. If you keep your steps small, and test
after each step, you will avoid prolonged debugging.

Well talk more about testing at thislevel in Code That's Easy to Test, and larger-scale testing in Ruthless Testing, but Mr. Fowler's
point of maintaining good regression testsis the key to refactoring with confidence.

It can also be helpful to make sure that drastic changes to a module—such as atering its interface or its functionality in an
incompatible manner—break the build. That is, old clients of this code should fall to compile. Y ou can then quickly find the old
clients and make the necessary changes to bring them up to date.

S0 next time you see a piece of code that isn't quite asit should be, fix both it and everything that depends on it. Manage the pain: if
it hurts now, but is going to hurt even more later, you might as well get it over with. Remember the lessons of Software Entropy,
don't live with broken windows.

Related sectionsinclude:

The Cat Ate My Source Code

Software Entropy

Stone Soup and Boiled Frogs

The Evils of Duplication

Orthogonality

Programming by Coincidence

Code That's Easy to Test

Ruthless Testing

Exercises

The following code has obviously been updated several

times over the years, but the changes haven't improved its

structure. Refactor it.

if (state

rate
am
calc

== TEXAS) {
TX_RATE;

base * TX RATE;
2*basi s(ant) +

extra(ant)*1. 05;

}

else if ((state == CH O
== MAI NE;

rate

M_RATE]

ant
calc

(state == CH O

base * rate;
2*basi s(ant) +

extra(ant)*1. 05;
if (state == CH O

points = 2;
}
el se {
rate = 1,
ant = base;

calc

2*basi s(ant) +

extra(ant)*1. 05;

}

|| (state

? OH_RATE :

| | @ve RuBoard

39.

The following Java class needs to support afew more
shapes. Refactor the class to prepare it for the additions.

public class Shape {

public static final int SQUARE

1;

public static final int ClRCLE
2;

public static final int
R GHT_TRI ANGLE = 3;

private int shapeType;
private double size;

D

public Shape(int shapeType, doubl
size) {
t hi s. shapeType = shapeType;
this. size = size;
}
/] ... other nethods ...
public double area(){
switch (shapeType) {
case SQUARE: return size*size;
case Cl RCLE: return
Mat h. Pl *si ze*si ze/ 4. 0;
case RIGHT _TRIANGLE: return
si ze*sizel 2. 0;
}
return O;
}
}

This Javacodeis part of aframework that will be used
throughout your project. Refactor it to be more general and
easier to extend in the future.

public class Wndow {
public Wndow(int width, int
height) { ... }
public void setSize(int wdth, int

height) { ... }
publ i c bool ean overl aps(W ndow w)

{ ...}
public int getArea() { ... }

| | @ve RuBoard

Code That'sEasy to Test

The Software IC is a metaphor that people like to toss around when discussing reusability and component-based devel opment.[3]
Theideaisthat software components should be combined just as integrated circuit chips are combined. Thisworks only if the
components you are using are known to be reliable.

[3] The term "Software IC" (Integrated Circuit) seems to have been invented in 1986 by Cox and Novobilski in their Objective-C book Object-Oriented
Programming [CN91].

Chips are designed to be tested—not just at the factory, not just when they are installed, but also in the field when they are
deployed. More complex chips and systems may have afull Built-in Self Test (BIST) feature that runs some base-level diagnostics
internally, or a Test Access Mechanism (TAM) that provides atest harness that allows the external environment to provide stimuli
and collect responses from the chip.

We can do the same thing in software. Like our hardware colleagues, we need to build testability into the software from the very
beginning, and test each piece thoroughly before trying to wire them together.

Unit Testing

Chip-level testing for hardware is roughly equivalent to unit testing in software—testing done on each module, in isolation, to verify
its behavior. We can get a better feeling for how a module will react in the big wide world once we have tested it throughly under
controlled (even contrived) conditions.

A software unit test is code that exercises a module. Typicaly, the unit test will establish some kind of artificia environment, then
invoke routines in the module being tested. It then checks the results that are returned, either against known values or against the
results from previous runs of the same test (regression testing).

Later, when we assemble our "software IC's" into a complete system, we'll have confidence that the individual parts work as
expected, and then we can use the same unit test facilities to test the system as awhole. We talk about this large-scal e checking of
the system in Ruthless Testing.

Before we get that far, however, we need to decide what to test at the unit level. Typically, programmers throw afew random bits of
data at the code and call it tested. We can do much better, using the ideas behind design by contract.

Testing Against Contract

We like to think of unit testing as testing against contract (see Design by Contract). We want to write test cases that ensure that a
given unit honorsits contract. Thiswill tell us two things: whether the code meet the contract, and whether the contract means what
wethink it means. We want to test that the module delivers the functionality it promises, over awide range of test cases and
boundary conditions.

What does this mean in practice? Let's ook at the square root routine we first encountered on page 114. Its contract is simple:

require:
argunment >= 0;
ensur e:
((result * result) - argunent).abs <= epsilon*argunent;

Thistells us what to test:

Passin a negative argument and ensure that it is rejected.

Pass in an argument of zero to ensure that it is accepted (thisis the boundary value).

Pass in values between zero and the maximum expressible argument and verify that the difference between the square of the
result and the original argument is less than some small fraction of the argument.

Armed with this contract, and assuming that our routine does its own pre- and postcondition checking, we can write abasic test
script to exercise the square root function.

public void testVal ue(double num double expected) {
double result = 0.0;

try { [/ Ve may throw a
result = nySqrt(num; // precondition exception
}
catch (Throwable e) {
if (num< 0.0) [/ If input is < 0, then
return; /! we're expecting the
el se /] exception, otherw se
assert(fal se); /] force a test failure
}
assert (Mat h. abs(expected-result) < epsilon*expected);

Then we can call this routine to test our square root function:

testValue(-4.0, 0.0);
testVvalue(0.0, 0.0);
testValue(2.0, 1.4142135624);
testVal ue(64.0, 8.0);
t est Val ue(1. 0e7, 3162.2776602);

Thisisapretty simpletest; in the real world, any nontrivial module is likely to be dependent on a number of other modules, so how
do we go about testing the combination?

Suppose we have amodule A that usesa LinkedList and a Sort. In order, we would test:

1.

LinkedList's contract, in full
2.

Sort's contract, in full
3.

A's contract, which relies on the other contracts but does not directly expose them

This style of testing requires you to test subcomponents of a module first. Once the subcomponents have been verified, then the
module itself can be tested.

If LinkedList and Sort's tests passed, but A's test failed, we can be pretty sure that the problemisin A, or in A's use of one of those
subcomponents. This technique is a great way to reduce debugging effort: we can quickly concentrate on the likely source of the
problem within module A, and not waste time reexamining its subcomponents.

Why do we go to all thistrouble? Above all, we want to avoid creating a "time bomb"—something that sits around unnoticed and
blows up at an awkward moment later in the project. By emphasizing testing against contract, we can try to avoid as many of those
downstream disasters as possible.

Tip 48

Designto Test

When you design a module, or even a single routine, you should design both its contract and the code to test that contract. By
designing code to pass atest and fulfill its contract, you may well consider boundary conditions and other issues that wouldn't
occur to you otherwise. There's no better way to fix errors than by avoiding them in the first place. In fact, by building the tests
before you implement the code, you get to try out the interface before you commit to it.

Writing Unit Tests

The unit tests for amodule shouldn't be shoved in some far-away corner of the source tree. They need to be conveniently located.
For small projects, you can embed the unit test for amodule in the module itself. For larger projects, we suggest moving each test
into a subdirectory. Either way, remember that if it isn't easy to find, it won't be used.

By making the test code readily accessible, you are providing devel opers who may use your code with two inval uable resources:
1.

Examples of how to use dl the functionality of your module

A means to build regression tests to validate any future changes to the code

It's convenient, but not always practical, for each class or module to contain its own unit test. In Java, for example, every class can
have its own main. In all but the application's main classfile, the main routine can be used to run unit tests; it will be ignored when
the application itself isrun. This has the benefit that the code you ship still contains the tests, which can be used to diagnose
problemsin thefield.

In C++ you can achieve the same effect (at compiletime) by using #ifdef to compile unit test code selectively. For example, here'sa
very simple unit test in C++, embedded in our module, that checks our square root function using a testVaue routine similar to the
Java one defined previously:

#ifdef _TEST_
int main(int argc, char **argv)
{
argc--; argv++; /1 skip program name
if (argc < 2) { // do standard tests if no args

testVal ue(-4.0, 0.0);
testValue(0.0, 0.0);
testValue(2.0, 1.4142135624);
test Val ue(64.0, 8.0);
t est Val ue(1. 0e7, 3162.2776602);

}

el se { /] else use args
doubl e num expect ed;

while (argc >= 2) {
num = atof (argv[0]);
expected = atof (argv[1]);
t est Val ue(num expect ed) ;

argc -= 2;
argv += 2;
}
}
return O;
}
#endi f

This unit test will either run aminimal set of testsor, if given arguments, allow you to pass datain from the outside world. A shell
script could use this ability to run a much more complete set of tests.

What do you do if the correct response for a unit test is to exit, or abort the program? In that case, you need to be able to select the
test to run, perhaps by specifying an argument on the command line. You'll also need to passin parameters if you need to specify
different starting conditions for your tests.

But providing unit testsisn't enough. Y ou must run them, and run them often. It also helps if the class passes itstests oncein a
while.

Using Test Har nesses

Because we usually write a lot of test code, and do alot of testing, we'll make life easier on ourselves and develop a standard testing
harness for the project. The main shown in the previous section is avery simple test harness, but usually we'll need more
functionality than that.

A test harness can handle common operations such as logging status, analyzing output for expected results, and selecting and
running the tests. Harnesses may be GUI driven, may be written in the same target language as the rest of the project, or may be
implemented as a combination of makefiles and Perl scripts. A simple test harness sis shown in the answer to Exercise 41 on page
305.

In object-oriented languages and environments, you might create a base class that provides these common operations. Individual
tests can subclass from that and add specific test code. Y ou could use a standard naming convention and reflection in Javato build
alist of tests dynamically. Thistechniqueis anice way of honoring the DRY principle—you don't have to maintain alist of available
tests. But before you go off and start writing your own harness, you may want to investigate Kent Beck and Erich Gammal's xUnit at [
URL 22]. They've already done the hard work.

Regardless of the technology you decide to use, test harnesses should include the following capabilities:
A standard way to specify setup and cleanup
A method for selecting individual tests or all available tests

A means of analyzing output for expected (or unexpected) results

A standardized form of failure reporting

Tests should be composable; that is, atest can be composed of subtests of subcomponents to any depth. We can use this feature
to test selected parts of the system or the entire system just as easily, using the same tools.

Ad Hoc Testing

During debugging, we may end up cresting some particular tests on-the-fly. These may beassmpleasa
print statement, or a piece of code entered interactively in adebugging or | DE environment.

At the end of the debugging session you need to formdize the adhoc test. If the code broke once, it is
likely to break again. Dont't just throw away the test you created; add it to the existing unit test.

For example, using JUnit (the Java member of the xUnit family), we might write our square root test as follows:

public class JUnitExanpl e extends Test Case {

public JUnitExanple(final String nane) {
super (nane) ;

}

protected void setUp() {
/1 Load up test data...
t est Dat a. addEl enent (new dbl Pair(-4.0,0.0));
t est Dat a. addEl enent (new dbl Pair(0.0,0.0));
t est Dat a. addEl enment (new dbl Pai r(64.0,8.0));
t est Dat a. addEl enent (new dbl Pai r (Doubl e. MAX_VALUE,
1.3407807929942597E154)) ;

}

public void testMySart() {
doubl e num expected,.result = 0.0;

Enunerati on enum = testData. el enent();
whil e (enum hasMoreEl enents()) {

dbl Pair p = (dbl Pai r)enum next El ement () ;
num = p.get Num();
expected = p.getExpected();
t est Val ue(num expected);
}
}

public static Test suite() {
TestSuite suite= new Testsuit();
suite. addTest (new JUni t Exanpl e("testM/Sqrt"));
return suite;

JUnit is designed to be composable: we could add as many tests as we wanted to this suite, and each of those tests could in turn be
asuite. In addition, you have your choice of agraphical or batch interface to drive the tests.

Build a Test Window

Even the best sets of tests are unlikely to find al the bugs; there's something about the damp, warm conditions of a production
environment that seems to bring them out of the woodwork.

This means you'll often need to test a piece of software once it has been deployed—with real-world data flowing though its veins.
Unlike acircuit board or chip, we don't have test pins in software, but we can provide various views into the internal state of a
module, without using the debugger (which may be inconvenient or impossible in a production application).

L og files containing trace messages are one such mechanism. Log messages should be in aregular, consistent format; you may want
to parse them automatically to deduce processing time or logic paths that the program took. Poorly or inconsistently formatted
diagnostics are just so much "spew"—they are difficult to read and impractical to parse.

Another mechanism for getting inside running code is the "hot-key" sequence. When this particular combination of keysis pressed,
adiagnostic control window pops up with status messages and so on. Thisisn't something you normally would reveal to end users,
but it can be very handy for the help desk.

For larger, more complex server code, a nifty technique for providing aview into its operation is to include a built-in Web server.
Anyone can point a Web browser to the application's HT TP port (which is usually on a nonstandard number, such as 8080) and see
internal status, log entries, and possibly even some sort of adebug control panel. This may sound difficult to implement, but it's not.
Freely available and embed-dable HTTP Web servers are available in avariety of modern languages. A good place to start looking is
[URL 58].

A Culture of Testing

All software you write will be tested—if not by you and your team, then by the eventual users—so you might as well plan on
testing it thoroughly. A little forethought can go along way toward minimizing maintenance costs and help-desk calls.

Despiteits hacker reputation, the Perl community has a very strong commitment to unit and regression testing. The Perl standard
modul e installation procedure supports a regression test by invoking

% nmake t est

There's nothing magic about Perl itsdlf in this regard. Perl makesit easier to collate and analyze test results to ensure compliance, but
the big advantage is simply that it's a standard—tests go in a particular place, and have a certain expected output. Testing ismore
cultural than technical; we can instill thistesting culture in a project regardless of the language being used.

Tip 49

Test Y our Software, or Your Users Will

Related sectionsinclude:

The Cat Ate My Source Code

Orthogonality

Design by Contract

Refactoring

Ruthless Testing

Exercises

41.
Design atest jig for the blender interface described in the
answer to Exercise 17 on page 289. Write ashell script that
will perform aregression test for the blender. Y ou need to
test basic functionality, error and boundary conditions, and
any contractual obligations. What restrictions are placed on
changing the speed? Are they being honored?

| @ve RuBoard [erevious esr

| | @ve RuBoard

Evil Wizards

There's no denying it—applications are getting harder and harder to write. User interfaces in particular are becoming increasingly
sophisticated. Twenty years ago, the average application would have a glass tel etype interface (if it had an interface at all).
Asynchronous terminals would typicaly provide a character interactive display, while pollable devices (such as the ubiquitous IBM
3270) would let you fill in an entire screen before hitting |-SEND-- . Now, users expect graphical user interfaces, with
context-sensitive help, cut and paste, drag and drop, OLE integration, and MDI or SDI. Users are looking for Web-browser
integration and thin-client support.

All the time the applications themselves are getting more complex. Most devel opments now use amultitier model, possibly with
some middleware layer or atransaction monitor. These programs are expected to be dynamic and flexible, and to interoperate with
applications written by third parties.

Oh, and did we mention that we needed it al next week?

Developers are struggling to keep up. If we were using the same kind of tools that produced the basic dumb-terminal applications 20
years ago, we'd never get anything done.

So the tool makers and infrastructure vendors have come up with a magic bullet, the wizard. Wizards are great. Do you need an MDI
application with OLE container support? Just click a single button, answer a couple of simple questions, and the wizard will
automatically generate skeleton code for you. The Microsoft Visual C++ environment creates over 1,200 lines of code for this
scenario, automatically. Wizards are hard at work in other contexts, too. Y ou can use wizards to create server components,
implement Java beans, and handle network interfaces— all complex areas where it's nice to have expert help.

But using awizard designed by a guru does not automatically make Joe developer equally expert. Joe can feel pretty good—he's just
produced a mass of code and a pretty spiffy-looking program. He just adds in the specific application functionality and it's ready to
ship. But unless Joe actually understands the code that has been produced on his behalf, he's fooling himself. He's programming by
coincidence. Wizards are a one-way street—they cut the code for you, and then move on. If the code they produce isn't quite right,
or if circumstances change and you need to adapt the code, you're on your own.

We are not against wizards. On the contrary, we dedicate an entire section (Code Generators) to writing your own. But if you do use
awizard, and you don't understand all the code that it produces, you won't be in control of your own application. Y ou won't be able
to maintain it, and you'll be struggling when it conies time to debug.

Tip 50

Don't Use Wizard Code Y ou Don't Understand

Some people feel that thisis an extreme position. They say that developers routinely rely on things they don't fully understand—the
guantum mechanics of integrated circuits, the interrupt structure of the processor, the algorithms used to schedul e processes, the
codein the supplied libraries, and so on. We agree. And we'd feel the same about wizardsif they were simply a set of library calls or
standard operating system services that developers could rely on. But they're not. Wizards generate code that becomes an integral
part of Joe's application. The wizard code is not factored out behind atidy interface—it isinterwoven line by line with functionality
that Joe writes.[4] Eventually, it stops being the wizard's code and starts being Joe's. And no one should be producing code they
don't fully understand.

[4] However, there are other techniques that help manage complexity. We discuss two, beans and AOP, in Orthogonality .

Related sectionsinclude:

Orthogonality

Code Generators

Challenges

If you have a GUI-building wizard available, use it to generate a skeleton application. Go through every line of code it
produces. Do you understand it all? Could you have produced it yourself? Would you have produced it yourself, or isit
doing things you don't need?

| | @ve RuBoard

| | @ve RuBoard

Chapter 7. Beforethe Project

Do you ever get the feeling that your project is doomed, even before it starts? Sometimes it might be, unless you establish some
basic ground rules first. Otherwise, you might as well suggest that it be shut down now, and save the sponsor some money.

At the very beginning of a project, you'll need to determine the requirements. Simply listening to usersis not enough: read The
Requirements Pit to find out more.

Conventional wisdom and constraint management are the topics of Solving Impossible Puzzles. Whether you are performing
requirements, analysis, coding, or testing, difficult problemswill crop up. Most of the time, they won't be as difficult as they first
appear to be.

When you think you've got the problems solved, you may still not feel comfortable with jumping in and starting. Isit simple
procrastination, or is it something more? Not Until You're Ready offers advice on when it may be prudent to listen to that cautionary
voice inside your head.

Starting too soon is one problem, but waiting too long may be even worse. In The Specification Trap, we'll discuss the advantages
of specification by example.

Finally, welll look at some of the pitfalls of formal devel opment processes and methodologiesin Circles and Arrows. No matter how
well thought out it is, and regardliess of which "best practices" it includes, no method can replace thinking.

With these critical issues sorted out before the project gets under way, you can be better positioned to avoid "analysis paralysis’
and actually begin your successful project.

| | @ve RuBoard

| | @ve RuBoard

The Requirements Pit

Perfection is achieved, not when there is nothing left to add, but when there is nothing left to take away....
Antoinede S. Exupery, Wind, Sand, and Stars, 1939

Many books and tutorials refer to requirements gathering as an early phase of the project. The word "gathering” seemsto imply a
tribe of happy analysts, foraging for nuggets of wisdom that are lying on the ground all around them while the Pastoral Symphony
plays gently in the background. "Gathering" implies that the requirements are already there—you need merely find them, place them
in your basket, and be merrily on your way.

It doesn't quite work that way. Requirements rarely lie on the surface. Normally, they're buried deep beneath layers of assumptions,
misconceptions, and politics.

Tip 51

Don't Gather Requirements—Dig for Them

Digging for Requirements

How can you recognize a true requirement while you're digging through al the surrounding dirt? The answer is both simple and
complex.

The simple answer is that arequirement is a statement of something that needs to be accomplished. Good requirements might
include the following:

An employee record may be viewed only by anominated group of people.
The cylinder-head temperature must not exceed the critical value, which varies by engine.

The editor will highlight keywords, which will be selected depending on the type of file being edited.
However, very few requirements are as clear-cut, and that's what makes requirements analysis complex.

The first statement in the list above may have been stated by the users as "Only an employee's supervisors and the personnel
department may view that employee's records.” s this statement truly a requirement? Perhaps today, but it embeds business policy
in an absolute statement. Policies change regularly, so we probably don't want to hardwire them into our requirements. Our
recommendation is to document these policies separately from the requirement, and hyperlink the two. Make the requirement the
genera statement, and give the developers the policy information as an example of the type of thing they'll need to support in the
implementation. Eventually, policy may end up as metadatain the application.

Thisisarelatively subtle distinction, but it's one that will have profound implications for the developers. If the requirement is stated
as"Only personnel can view an employee record,” the developer may end up coding an explicit test every time the application
accesses these files. However, if the statement is " Only authorized users may access an employee record,” the developer will

probably design and implement some kind of access control system. When policy changes (and it will), only the metadata for that
system will need to be updated. In fact, gathering requirements in this way naturally leads you to a system that iswell factored to
support metadata.

The distinctions among requirements, policy, and implementation can get very blurred when user interfaces are discussed. "The
system must let you choose aloan term” is a statement of requirement. "We need alist box to select the loan term™ may or may not
be. If the users absolutely must have alist box, then it isarequirement. If instead they are describing the ability to choose, but are
using listbox as an example, then it may not be. The box on page 205 discusses a project that went horribly wrong because the
users interface needs were ignored.

It'simportant to discover the underlying reason why users do a particular thing, rather than just the way they currently do it. At the
end of the day, your development has to solve their business problem, not just meet their stated requirements. Documenting the
reasons behind requirements will give your team inval uable information when making daily implementation decisions.

There'sasimple technique for getting inside your users' requirements that isn't used often enough: become a user. Are you writing a
system for the help desk? Spend a couple of days monitoring the phones with an experienced support person. Are you automating a
manual stock control system? Work in the warehouse for aweek.[1] Aswell as giving you insight into how the system will really be
used, you'd be amazed at how the request "May | sit in for aweek while you do your job?" helps build trust and establishes a basis
for communication with your users. Just remember not to get in the way!

[1] Does aweek sound like along time? It really isn't, particularly when you're looking at processes in which management and workers occupy different
worlds. Management will give you one view of how things operate, but when you get down on the floor, you'll find a very different reality—one that will
take time to assimilate.

Tip 52

Work with aUser to Think Like aUser

The requirements mining process is also the time to start to build a rapport with your user base, learning their expectations and
hopes for the system you are building. See Great Expectations, for more.

Documenting Requirements

So you are sitting down with the users and prying genuine requirements from them. Y ou come across afew likely scenarios that
describe what the application needs to do. Ever the professional, you want to write these down and publish a document that
everyone can use as a basis for discussions—the devel opers, the end users, and the project sponsors.

That's a pretty wide audience.

Ivar Jacobson [Jac94] proposed the concept of use cases to capture requirements. They let you describe a particular use of the
system— not in terms of user interface, but in a more abstract fashion. Unfortunately, Jacobson's book was alittle vague on details,
so there are now many different opinions on what a use case should be. Isit formal or informal, simple prose or a structured
document (like aform)? What level of detail is appropriate (remember we have awide audience)?

Sometimesthe Interface Isthe System

Inan aticlein Wired magazine (January 1999, page 176), producer and musician Brian Eno described
an incredible piece of technol ogy—the ultimate mixing board. It does anything to sound that can be
done. And yet, instead of |etting musi cians make better music, or produce arecording faster or less
expensvdly, it getsin the way; it disrupts the creative process.

To seewhy, you haveto look at how recording engineerswork. They balance soundsintuitively. Over
the years, they develop an innate feedback loop between their fingertips—diding faders, rotating knobs,
and so on However, the interface to the new mixer didn't leverage off those abilities. Instead, it forced its
usersto type on akeyboard or click amouse. The functionsit provided were comprehensive, but they
were packaged in unfamiliar and exotic ways. The functions the engineers needed were sometimes
hidden behind obscure names, or were achieved with nonintuitive combinations of basic facilities.

That environment has arequirement to leverage existing skill sets. While davishly duplicating what
dready exists doesn't alow for progress, we must be able to provide a transition to the future.

For example, the recording engineers may have been better served by some sort of touchscreen
interface—dtill tactile, fill mounted asatraditiond mixing board might be, yet dlowing the softwareto
go beyond the reelm of fixed knobs and switches. Providing acomfortable trangtion through familiar
metaphorsis oneway to help get buy-in.

Thisexample aso illustrates our belief that successful tools adapt to the handsthat use them. Inthiscase,
itisthetoolsthat you build for others that must be adaptable.

One way of looking at use cases is to emphasize their goal-driven nature. Alistair Cockburn has a paper that describes this
approach, as well as templates that can be used (strictly or not) as a starting place ([Coc97a], aso online at [URL 46]). Figure 7.1 on
the following page shows an abbreviated example of histemplate, while Figure 7.2 shows his sample use case.

Figure7.1. Cockburn's use casetemplate

A. CHARACTERISTIC INFORMATION
= Goal in context
- Scope
- Level
- Preconditions
- Success end condition
= Failed end condition
= Primary actor
- Trigger
B. MAIN SUCCESS SCENARIO
C. EXTENSIONS
D. VARIATIONS
E. RELATED INFORMATION
- Priority
- Performance target
= Frequency
= Superordinate use case
= Subordinate use cases
= Channel to primary actor
= Secondary actors
— Channel to secondary actors
F. SCHEDULE
G. OPEN ISSUES

Figure7.2. A sample use case

USE CASE 5: BUY GOODS

A, CHARACTERISTIC INFORMATION
' » Goal in context: Buyer issues request directly to our company, expects
goods shipped and to be billed.
Scope: Company
Level: Summary
Preconditions: We know buyer. their address, ete.
Success end condition: Buyer has goods, we have money for the goods.
Failed end condition: We have not sent the goods, buyer has not sent
the money.
¢ Primary actor: Buyer, any agent [or computer) acting for the customer
s Trigger: Purchase request comes in,
B. MAIN SUCCESS SCENARIO
Buyer calls in with a purchase request.
Company captures buyer's name, address, requested goods, etc.
Company gives buyer information on goods, prices, delivery dates, ete.
Buyer signs for order.
Company creates order, ships order to buyer.
Company ships inveice (o buyer.
. Buyer pays invoice.
C. EXTENSIONS
Ja. Company is out of ane of the ordered items: Renegotiate order.
4a. Buyer pays directly with credit card: Take payment by credit card (use
case 44),
7a. Buyer returns goods: Handle returned goods [use case 105).
D. VARIATIONS
1. Buyer may use phone in, fax in, Web order form, electronic interchange.
7. Buyer may pay by cash, money order, check, or credit card.
E. RELATED INFORMATION
Priority: Top
Performance target: 5 minutes for order, 45 days until paid
Frequency: 200/day
Superordinate use case: Manage customer relationship (use case 2).
Subordinate use cases: Create order (15). Take payment by credit card
(44). Handle returned goods (105).
s+ Channel to primary actor: May be phone. file, or interactive
¢ Secondary actors: Credit card company, bank. shipping service
F. SCHEDULE
¢+ Due date: Release 1.0
G. OPEN ISSUES
+ What happens if we have part of the order?
« What happens if credit card is stolen?

- B ® & @

@Ok LDk

]

By using aformal template as an aide-mémoire, you can be sure that you include al the information you need in a use case:
performance characteristics, other involved parties, priority, frequency, and various errors and exceptions that can crop up
("nonfunctional requirements"). Thisisaso agreat place to record user comments such as "oh, except if we get a xxx condition,
then we have to do yyy instead." The template also serves as a ready-made agenda for meetings with your users.

This sort of organization supports the hierarchical structuring of use cases—nesting more detailed use casesinside higher-level
ones. For example, post debit and post credit both elaborate on post transaction.

Use Case Diagrams
Workflow can be captured with UML activity diagrams, and conceptual-level class diagrams can sometimes be useful for modeling

the business at hand. But true use cases are textual descriptions, with a hierarchy and cross-links. Use cases can contain hyperlinks
to other use cases, and they can be nested within each other.

It seemsincredible to us that anyone would seriously consider documenting information this dense using only simplistic stick
people such as Figure 7.3. Don't be a dlave to any notation; use whatever method best communi cates the requirements with your
audience.

Figure7.3. UML use cases—so simple a child could doit!

Me Martmy

Over specifying

A big danger in producing a requirements document is being too specific. Good requirements documents remain abstract. Where
reguirements are concerned, the simplest statement that accurately reflects the business need is best. This doesn't mean you can be
vague—Yyou must capture the underlying semantic invariants as requirements, and document the specific or current work practices

aspolicy.

Requirements are not architecture. Requirements are not design, nor are they the user interface. Requirements are need.

Seeing Further

The Y ear 2000 problem is often blamed on short-sighted programmers, desperate to save afew bytes in the days when mainframes
had |ess memory than amodern TV remote control.

But it wasn't the programmers doing, and it wasn't really a memory usage issue. If anything, it was the system analysts' and
designers fault. The Y 2K problem came about from two main causes: afailure to see beyond current business practice, and a
violation of the DRY principle.

Businesses were using the two-digit shortcut long before computers came on the scene. It was common practice. The earliest data
processing applications merely automated existing business processes, and simply repeated the mistake. Even if the architecture
required two-digit years for data input, reporting, and storage, there should have been an abstraction of a DATE that "knew" the
two digits were an abbreviated form of the real date.

Tip53

Abstractions Live Longer than Details

Does "seeing further" require you to predict the future? No. It means generating statements such as

The system makes active use of an abstraction of DATES. The systemwill implement DATE services, such as formatting, storage,
and math operations, consistently and universally.

The requirements will specify only that dates are used. It may hint that some math may be done on dates. It may tell you that dates
will be stored on various forms of secondary storage. These are genuine requirements for aDATE module or class.

Just One More Wafer-Thin Mint...

Many projects failures are blamed on an increase in scope—also known as feature bloat, creeping featurism, or requirements creep.
Thisis an aspect of the boiled-frog syndrome from Stone Soup and Boiled Frogs. What can we do to prevent requirements from
creeping up on us?

In the literature, you will find descriptions of many metrics, such as bugs reported and fixed, defect density, cohesion, coupling,
function points, lines of code, and so on. These metrics may be tracked by hand or with software.

Unfortunately, not many projects seem to track requirements actively. This means that they have no way to report on changes of
scope—who requested a feature, who approved it, total number of requests approved, and so on.

The key to managing growth of requirementsis to point out each new feature's impact on the schedul e to the project sponsors.
When the project is ayear late from initial estimates and accusations start flying, it can be helpful to have an accurate, complete
picture of how, and when, requirements growth occurred.

It's easy to get sucked into the "just one more feature" maelstrom, but by tracking requirements you can get a clearer picture that
"just one more feature" isrealy the fifteenth new feature added this month.

Maintain a Glossary
As soon as you start discussing requirements, users and domain experts will use certain terms that have specific meaning to them.

They may differentiate between a"client" and a"customer,” for example. It would then be inappropriate to use either word casually
in the system.

Create and maintain a project glossary—one place that defines al the specific terms and vocabulary used in a project. All
participants in the project, from end users to support staff, should use the glossary to ensure consistency. Thisimpliesthat the
glossary needs to be widely accessible—a good argument for Web-based documentation (more on that in a moment).

Tip54

Use a Project Glossary

It's very hard to succeed on a project where the users and devel opers refer to the same thing by different names or, even worse, refer
to different things by the same name.

Get theWord Out

In It's All Writing, we discuss publishing of project documents to internal Web sites for easy access by all participants. This method
of distribution is particularly useful for requirements documents.

By presenting requirements as a hypertext document, we can better address the needs of a diverse audience—we can give each
reader what they want. Project sponsors can cruise along at a high level of abstraction to ensure that business objectives are met.
Programmers can use hyperlinksto "drill down" to increasing levels of detail (even referencing appropriate definitions or
engineering specifications).

Web-based distribution also avoids the typical two-inch-thick binder entitled Requirements Analysis that no one ever reads and
that becomes outdated the instant ink hits paper.

If it's on the Web, the programmers may even read it.

Related sectionsinclude:

Stone Soup and Boiled Frogs

Good-Enough Software

Circlesand Arrows

It's All Writing

Great Expectations

Challenges

Can you use the software you are writing? Is it possible to have a good feel for requirements without being able to use the
software yourself?

Pick a non-computer-related problem you currently need to solve. Generate requirements for a noncomputer solution.

Exercises

42.
Which of the following are probably genuine requirements? Restate
those that are not to make them more useful (if possible).

1.
The response time must be less than 500 ms.

2.
Dialog boxeswill have agray background.

3.
The application will be organized as a number of front-end
processes and a back-end server.

4,
If auser enters non-numeric charactersin anumeric field,
the system will beep and not accept them.

5.

The application code and data must fit within 256kB.

| | @ve RuBoard

| | @ve RuBoard

Solving | mpossible Puzzles

Gordius, the King of Phrygia, once tied a knot that no one could untie. It was said that he who solved the riddle of the Gordian
Knot would rule all of Asia. So along comes Alexander the Great, who chops the knot to bits with his sword. Just a little different
inter pretation of the requirements, that's all... and he did end up ruling most of Asia.

Every now and again, you will find yourself embroiled in the middle of a project when areally tough puzzle comes up: some piece of
engineering that you just can't get a handle on, or perhaps some hit of code that is turning out to be much harder to write than you
thought. Maybe it looks impossible. But isit redlly as hard as it seems?

Consider real-world puzzles—those devious little bits of wood, wrought iron, or plastic that seem to turn up as Christmas presents
or at garage sales. All you haveto do is remove thering, or fit the T-shaped pieces in the box, or whatever.

So you pull on thering, or try to put the T'sin the box, and quickly discover that the obvious solutions just don't work. The puzzle
can't be solved that way. But even though it's obvious, that doesn't stop people from trying the same thing—over and
over—thinking there must be away.

Of course, thereisn't. The solution lies elsawhere. The secret to solving the puzzle isto identify the real (not imagined) constraints,
and find a solution therein. Some constraints are absolute; others are merely preconceived notions. Absolute constraints must be
honored, however distasteful or stupid they may appear to be. On the other hand, some apparent constraints may not be real
constraints at all. For example, there's that old bar trick where you take a brand new, unopened champagne bottle and bet that you
can drink beer out of it. Thetrick isto turn the bottle upside down, and pour a small quantity of beer in the hollow in the bottom of
the bottle. Many software problems can be just as sneaky.

Degrees of Freedom

The popular buzz-phrase "thinking outside the box" encourages us to recognize constraints that might not be applicable and to
ignore them.

But this phrase isn't entirely accurate. If the "box" is the boundary of constraints and conditions, then the trick isto find the box,
which may be considerably larger than you think.

The key to solving puzzles is both to recognize the constraints placed on you and to recognize the degrees of freedom you do have,
for in those you'll find your solution. Thisiswhy some puzzles are so effective; you may dismiss potential solutions too readily.

For example, can you connect all of the dots in the following puzzle and return to the starting point with just three straight
Ii'nes—V\ﬂ thout lifting your pen from the paper or retracing your steps [Hol 78]?

Y ou must challenge any preconceived notions and evaluate whether or not they are real, hard-and-fast constraints.
It's not whether you think inside the box or outside the box. The problem liesin finding the box—identifying the real constraints.
Tip55

Don't Think Outside the Box—Find the Box

When faced with an intractable problem, enumerate all the possible avenues you have before you. Don't dismiss anything, no
matter how unusable or stupid it sounds. Now go through the list and explain why a certain path cannot be taken. Are you sure?
Can you prove it?

Consider the Trojan horse—a novel solution to an intractable problem. How do you get troops into awalled city without being
discovered? Y ou can bet that "through the front door" was initially dismissed as suicide.

Categorize and prioritize your constraints. When woodworkers begin a project, they cut the longest pieces first, then cut the smaller
pieces out of the remaining wood. In the same manner, we want to identify the most restrictive constraints first, and fit the remaining
congtraints within them.

By the way, a solution to the Four Posts puzzle is shown on page 307.

There Must Be an Easier Way!

Sometimes you will find yourself working on a problem that seems much harder than you thought it should be. Maybe it feelslike
you're going down the wrong path—that there must be an easier way than this! Perhaps you are running late on the schedule now,
or even despair of ever getting the system to work because this particular problem is"impossible."

That's when you step back a pace and ask yourself these questions:

Is there an easier way?

Areyou trying to solve the right problem, or have you been distracted by a peripheral technicality?

Why isthisthing a problem?

What isit that's making it so hard to solve?

Doesit have to be done this way?

Doesit have to be done at all?

Many times a surprising revelation will cometo you as you try to answer one of these questions. Many times a reinterpretation of
the requirements can make awhol e set of problems go away—just like the Gordian knot.

All you need are the real constraints, the misleading constraints, and the wisdom to know the difference.

Challenges

Take ahard look at whatever difficult problem you are embroiled in today. Can you cut the Gordian knot? Ask yourself the
key questions we outlined above, especially "Does it have to be done this way?"

Were you handed a set of constraints when you signed on to your current project? Are they all still applicable, and isthe
interpretation of them still valid?

| | @ve RuBoard

| | @ve RuBoard

Not Until You're Ready

He who hesitates is sometimes saved.
James Thurber, The Glassin the Field

Great performers share atrait: they know when to start and when to wait. The diver stands on the high-board, waiting for the perfect
moment to jump. The conductor stands before the orchestra, arms raised, until she senses that the moment isright to start the piece.

You are agreat performer. Y ou too need to listen to the voice that whispers "wait." If you sit down to start typing and there's some
nagging doubt in your mind, heed it.

Tip 56

Listen to Nagging Doubts—Start When Y ou're Ready

There used to be a style of tennis coaching called "inner tennis." Y ou'd spend hours hitting balls over the net, not particularly trying
for accuracy, but instead verbalizing just where the ball hit relative to some target (often a chair). The idea was that the feedback
would train your subconscious and reflexes, so that you improved without consciously knowing how or why.

As adeveloper, you've been doing the same kind of thing during your entire career. Y ou've been trying things and seeing which
worked and which didn't. Y ou've been accumulating experience and wisdom. When you feel a nagging doubt, or experience some
reluctance when faced with atask, heed it. Y ou may not be able to put your finger on exactly what's wrong, but give it time and your
doubts will probably crystallize into something more solid, something you can address. Software development is till not a science.
Let your instincts contribute to your performance.

Good Judgment or Procrastination?

Everyone fears the blank sheet of paper. Starting a new project (or even anew module in an existing project) can be an unnerving
experience. Many of uswould prefer to put off making the initial commitment of starting. So how can you tell when you're simply
procrastinating, rather than responsibly waiting for all the piecesto fal into place?

A technique that has worked for usin these circumstancesis to start prototyping. Choose an area that you feel will be difficult and
begin producing some kind of proof of concept. One of two things will typically happen. Shortly after starting, you may feel that
you're wasting your time. This boredom is probably a good indication that your initia reluctance was just a desire to put off the
commitment to start. Give up on the prototype, and hack into the real development.

On the other hand, as the prototype progresses you may have one of those moments of revelation when you suddenly realize that
some basic premise was wrong. Not only that, but you'll see clearly how you can put it right. You'll feel comfortable abandoning the
prototype and launching into the project proper. Y our instincts were right, and you've just saved yourself and your team a
considerable amount of wasted effort.

When you make the decision to prototype as away of investigating your unease, be sure to remember why you're doing it. The last
thing you want is to find yourself several weeks into serious devel opment before remembering that you started out writing a
prototype.

Somewhat cynically, starting work on a prototype might also be more politically acceptable than simply announcing that "1 don't feel
right about starting" and firing up solitaire.

Challenges

Discuss the fear-of-starting syndrome with your colleagues. Do others experience the same thing? Do they heed it? What
tricks do they use to overcome it? Can a group help overcome an individual's reluctance, or isthat just peer pressure?

| | @ve RuBoard

| | @ve RuBoard

The Specification Trap

The Landing Pilot is the Non-Handling Pilot until the 'decision altitude' call, when the Handling Non-Landing Pilot hands the

handling to the Non-Handling Landing Pilot, unless the latter calls 'go-around,’ in which case the Handling Non-Landing Pilot
continues handling and the Non-Handling Landing Pilot continues non-handling until the next call of 'land' or 'go-around' as

appropriate. In view of recent confusions over these rules, it was deemed necessary to restate them clearly.

British Airways memorandum, quoted in Pilot M agazine, December 1996

Program specification is the process of taking arequirement and reducing it down to the point where a programmer's skill can take
over. Itisan act of communication, explaining and clarifying the world in such away asto remove major ambiguities. Aswell as
talking to the developer who will be performing theinitia implementation, the specification is arecord for future generations of
programmers who will be maintaining and enhancing the code. The specification is aso an agreement with the user—a codification
of their needs and an implicit contract that the final system will be in line with that requirement.

Writing a specification is quite aresponsibility.

The problem isthat many designersfind it difficult to stop. They feel that unless every little detail is pinned down in excruciating
detail they haven't earned their daily dollar.

Thisisamistake for severa reasons. Fird, it's naive to assume that a specification will ever capture every detail and nuance of a
system or its requirement. In restricted problem domains, there are formal methods that can describe a system, but they still require
the designer to explain the meaning of the notation to the end users—thereis still a human interpretation going on to mess things
up. Even without the problemsinherent in thisinterpretation, it is very unlikely that the average user knows going in to a project
exactly what they need. They may say they have an understanding of the requirement, and they may sign off on the 200-page
document you produce, but you can guarantee that once they see the running system you'll be inundated with change requests.

Second, thereis a problem with the expressive power of language itsdlf. All the diagramming techniques and formal methods till rely
on natural language expressions of the operations to be performed.[2] And natural languageisreally not up to the job. Look at the
wording of any contract: in an attempt to be precise, lawyers have to bend the language in the most unnatural ways.

[2] There are some formal techniques that attempt to express operations algebraically, but these techniques are rarely used in practice. They still require
that the analysts explain the meaning to the end users.

Here's achallenge for you. Write a short description that tells someone how to tie bows in their shoelaces. Go on, try it!

If you are anything like us, you probably gave up somewhere around "now roll your thumb and forefinger so that the free end
passes under and inside the left lace...." It is a phenomenally difficult thing to do. And yet most of us can tie our shoes without
conscious thought.

Tip 57

Some Things Are Better Done than Described

Finaly, thereis the straightjacket effect. A design that leaves the coder no room for interpretation robs the programming effort of
any skill and art. Some would say thisis for the best, but they're wrong. Often, it isonly during coding that certain options become
apparent. While coding, you may think "Look at that. Because of the particular way | coded thisroutine, | could add this
additional functionality with almost no effort” or " The specification says to do this, but | could achieve an almost identical result
by doing it a different way, and | could do it in half the time." Clearly, you shouldn't just hack in and make the changes, but you
wouldn't even have spotted the opportunity if you were constrained by an overly prescriptive design.

As a Pragmatic Programmer, you should tend to view requirements gathering, design, and implementation as different facets of the
same process—the delivery of a quality system. Distrust environments where requirements are gathered, specifications are written,
and then coding starts, all in isolation. Instead, try to adopt a seamless approach: specification and implementation are smply
different aspects of the same process—an attempt to capture and codify a requirement. Each should flow directly into the next, with
no artificial boundaries. Y ou'll find that a healthy development process encourages feedback from implementation and testing into
the specification process.

Just to be clear, we are not against generating specifications. Indeed, we recognize that there are times where incredibly detailed
specifications are demanded—for contractual reasons, because of the environment where you work, or because of the nature of the
product you are developing.[3] Just be aware that you reach a point of diminishing, or even negative, returns as the specifications
get more and more detailed. Also be careful about building specifications layered on top of specifications, without any supporting
implementation or prototyping; it's all too easy to specify something that can't be built.

[3] Detailed specifications are clearly appropriate for life-critical systems. We feel they should also be produced for interfaces and libraries used by
others. When your entire output is seen as a set of routine calls, you'd better make sure those calls are well specified.

Thelonger you allow specifications to be security blankets, protecting devel opers from the scary world of writing code, the harder it
will be to move on to hacking out code. Don't fall into this specification spiral: at some point, you need to start coding! If you find
your team all wrapped up in warm, comfy specifications, break them out. Look at prototyping, or consider atracer bullet
development.

Related sectionsinclude:

Tracer Bullets

Challenges

The shoelace example mentioned in the text is an interesting illustration of the problems of written descriptions. Did you
consider describing the process using diagrams rather than words? Photographs? Some formal notation from topol ogy?
Models with wire laces? How would you teach atoddler?

Sometimes a picture is worth more than any number of words. Sometimesit isworthless. If you find yourself
overspecifying, would pictures or special notations help? How detailed do they have to be? When is a drawing tool better
than awhiteboard?

| | @ve RuBoard

| | @ve RuBoard

Circlesand Arrows

[photographs] with circles and arrows and a paragraph on the back of each one explaining what each one was, to be used as
evidence against us...

Arlo Guthrie, " Alice' s Restaur ant”

From structured programming, through chief programmer teams, CA SE tools, waterfall development, the spiral model, Jackson, ER
diagrams, Booch clouds, OMT, Objectory, and Coad/Y ourdon, to today's UML, computing has never been short of methods
intended to make programming more like engineering. Each method gathersits disciples, and each enjoys a period of popularity.
Then each isreplaced by the next. Of dl of them, perhaps only the first—structured programming— has enjoyed along life.

Y et some developers, adrift in asea of sinking projects, keep clinging to the latest fad just as shipwreck victims latch onto passing
driftwood. As each new piece floats by they painfully swim over, hoping it will be better. At the end of the day, though, it doesn't
matter how good the flotsam is, the developers are till aimlessly adrift.

Don't get uswrong. We like (some) formal techniques and methods. But we believe that blindly adopting any technique without
putting it into the context of your development practices and capabilitiesis arecipe for disappointment.

Tip 58

Don't Be a Slave to Forma Methods

Formal methods have some serious shortcomings.

Most formal methods capture requirements using a combination of diagrams and some supporting words. These pictures
represent the designers understanding of the requirements. However in many cases these diagrams are meaningless to the
end users, so the designers have to interpret them. Therefore, thereis no real formal checking of the requirements by the
actual user of the system—everything is based on the designers explanations, just asin old-fashioned written
requirements. We see some benefit in capturing requirements this way, but we prefer, where possible, to show the user a
prototype and let them play with it.

Formal methods seem to encourage specialization. One group of people works on a data model, another looks at the
architecture, while requirements gatherers collect use cases (or their equivalent). We've seen thislead to poor
communication and wasted effort. There is also atendency to fall back into the us versus them mentality of designers
against coders. We prefer to understand the whole of the system we're working on. It may not be possible to have an
in-depth grasp of every aspect of a system, but you should know how the components interact, where the data lives, and
what the requirements are.

We like to write adaptable, dynamic systems, using metadata to allow usto change the character of applications at runtime.
Most current formal methods combine a static object or data model with some kind of event- or activity-charting
mechanism. We haven't yet come across one that allows us to illustrate the kind of dynamism we feel systems should
exhibit. In fact, most formal methods will lead you astray, encouraging you to set up static relationships between objects
that really should be knitted together dynamically.

Do Methods Pay Off?

INna1999 CACM article[Gla9%b], Robert Glass reviews the research into the productivity and quality improvements gained using
seven different software development technologies (4GL s, structured techniques, CASE tools, forma methods, clean room
methodology, process models, and object orientation). He reports that the initial hype surrounding all of these methods was
overblown. Although there is an indication that some methods have benefits, these benefits start to manifest themselves only after a
significant productivity and quality drop while the technique is adopted and its users train themselves. Never underestimate the

cost of adopting new tools and methods. Be prepared to treat the first projects using these techniques as a learning experience.

Should We Use Formal M ethods?

Absolutely. But always remember that formal devel opment methods are just one more tool in the toolbox. If, after careful analysis,
you feel you need to use aformal method, then embrace it—but remember who isin charge. Never become a slave to a methodol ogy:
circles and arrows make poor masters. Pragmatic Programmers look at methodologies critically, then extract the best from each and
meld them into a set of working practices that gets better each month. Thisis crucial. Y ou should work constantly to refine and
improve your processes. Never accept the rigid confines of amethodology as the limits of your world.

Don't givein to the false authority of a method. People may walk into meetings with an acre of class diagrams and 150 use cases, but
all that paper is still just their fallible interpretation of requirements and design. Try not to think about how much atool cost when
you look at its output.

Tip59

Expensive Too Do Not Produce Better Designs

Formal methods certainly have their place in development. However, if you come across a project where the philosophy is "the class

diagram is the application, the rest is mechanical coding," you know you're looking at a waterlogged project team and along paddie
home.

Related sectionsinclude:

The Requirements Pit

Challenges

Use case diagrams are part of the UML process for gathering requirements (see The Requirements Pit). Are they an
effective way of communicating with your users? If not, why are you using them?

How can you tell if aforma method is bringing your team benefits? What can you measure? What constitutes an
improvement? Can you distinguish between benefits of the tool and increased experience on the part of team members?

Where is the break-even point for introducing new methods to your team? How do you eval uate the trade-off between
future benefits and current losses of productivity as the tool is introduced?

Aretools that work for large projects good for small ones? How about the other way around?

| | @ve RuBoard

| | @ve RuBoard

Chapter 8. Pragmatic Projects

Asyour project gets under way, we need to move away from issues of individual philosophy and coding to talk about larger,
project-sized issues. We aren't going to go into specifics of project management, but we will talk about a handful of critical areas that
can make or break any project.

As soon as you have more than one person working on a project, you need to establish some ground rules and delegate parts of the
project accordingly. In Pragmatic Teams, we'll show how to do this while honoring the pragmatic philosophy.

The single most important factor in making project-level activities work consistently and reliably is to automate your procedures.
Well explain why, and show some redl-life examplesin Ubiquitous Automation.

Earlier, we talked about testing as you code. In Ruthless Testing, we go to the next step of project-wide testing philosophy and
tools—especialy if you don't have alarge QA staff at your beck and call.

The only thing that developers dislike more than testing is documentation. Whether you have technical writers helping you or are
doing it on your own, we'll show you how to make the chore less painful and more productive in It's All Writing.

Successisin the eye of the behol der—the sponsor of the project. The perception of successis what counts, and in Great
Expectations we'll show you some tricks to delight every project's sponsor.

Thelast tip in the book is adirect consequence of all the rest. In Pride and Prejudice, we encourage you to sign your work, and to
take pride in what you do.

| | @ve RuBoard

| | @ve RuBoard

Pragmatic Teams

At Group L, Stoffel oversees six first-rate programmers, a managerial challenge roughly comparable to
herding cats.

The Washington Post Magazine, June 9, 1985

So far in thisbook we've looked a pragmatic techniques that help an individual be a better programmer. Can these
methods work for teams aswell?

The answer isaresounding "yes!" There are advantages to being a pragmatic individua, but these advantages are
multiplied manyfold if theindividua isworking on apragmetic team.

In this section well look briefly at how pragmatic techniques can be applied to teams asawhole. These notesare
only agtart. Once you've got agroup of pragmeatic developers working in an enabling environment, they'll quickly
develop and refine their own team dynamicsthat work for them.

Let'srecast some of the previous sectionsin terms of teams.

No Broken Windows

Quadlity isateam issue. The most diligent developer placed on ateam that just doesn't care will find it difficult to
maintain the enthusiasm needed to fix niggling problems. The problem isfurther exacerbated if the team actively
discourages the devel oper from spending time on these fixes.

Teams as awhole should not tolerate broken windows—those smal imperfections that no onefixes. The team must
take respongbility for the quality of the product, supporting developers who understand the no broken windows
philosophy we describein Software Entropy, and encouraging those who haven't yet discovered it.

Some team methodol ogies have a quality officer —someone to whom the team del egates the responsihility for the
qudity of theddiverable. Thisiscdearly ridiculous qudity can comeonly from theindividua contributions of all team
members.

Boiled Frogs
Remember the poor frog in the pan of water, back in Stone Soup and Boiled Frogs? It doesn't notice the gradual

changein its environment, and ends up cooked. The same can happen to individuals who aren't vigilant. It can be
difficult to keep an eye on your overdl environment in the heat of project development.

It'seven easier for teams as awhole to get boiled. People assume that someone eseis handling an issug, or that the

teamn leader must have OK'd a change that your user is requesting. Even the best-intentioned teams can be oblivious
to Sgnificant changesin ther projects.

Fight this. Make sure everyone actively monitors the environment for changes. Maybe agppoint a chief water tester.
Have this person check constantly for increased scope, decreased time scales, additional features, new
environments—anything that wasn't in the origina agreement. Keep metrics on new requirements (see page 209).
The team needn't rgject changes out of hand—you smply need to be aware that they're happening. Otherwisg, itll be
you in the hot water.

Communicate

It'sobvious that developersin ateam must talk to each other. We gave some suggestionsto facilitate thisin
Communicate! . However, it's easy to forget that the team itself has a presence within the organization. The team asan
entity needsto communicate clearly with the rest of the world.

To outsders, the worst project teams are those that appear sullen and reticent. They hold meetings with no structure,
where no one wantsto talk. Their documents are amess. no two look the same, and each uses different terminology.

Grest project teams have adistinct persondity. People look forward to meetings with them, because they know that
they'll see awell-prepared performance that makes everyone fed good. The documentation they produce s crisp,
accurate, and consistent. The team speaks with one voice.[1] They may even have a sense of humor.

[1] The team speaks with one voice-externally. Internally, we strongly encourage lively, robust debate. Good developers tend to be passionate about
their work.

Thereisasmple marketing trick that hel ps teams communicate as one: generate abrand. When you start a project,
come up with anamefor it, ideally something off-the-wall. (In the past, we've named projects after things such as
killer parrotsthat prey on sheep, optical illusions, and mythica cities)) Spend 30 minutes coming up with azany logo,
and use it on your memas and reports. Use your team's name liberally when talking with people. It soundssilly, but it
gives your team an identity to build on, and the world something memorable to associate with your work.

Don't Repeat Y our self
In The Evils of Duplication, we talked about the difficulties of eiminating duplicated work between membersof a

team. This duplication leads to wasted effort, and can result in amaintenance nightmare. Clearly good communication
can help here, but sometimes something extrais needed.

Some teams appoint amember asthe project librarian, responsible for coordinating documentation and code
repositories. Other team members can use this person asthe first port of cal when they'relooking for something. A
good librarian will aso be able to spot impending duplication by reading the materia that they're handling.

When the project'stoo big for one librarian (or when no one wantsto play the role), appoint people asfoca points
for various functiona aspects of thework. If people want to talk over date handling, they should know to talk with
Mary. If there's a database schemaissue, see Fred.

And don' forget the value of groupware systems and loca Usenet news-groups for communicating and archiving
guestions and answers.

Orthogonality

Traditional team organization is based on the ol d-fashioned waterfall method of software congtruction. Individuasare
assigned roles based on their job function. Y ou'll find business anaydts, architects, designers, programmers, testers,
documenters, and thelike.[2) Thereisan implicit hierarchy here—the closer to the user you're alowed, the more
senior you are.

[2] In The Rational Unified Process: An Introduction, the author identifies 27 separate roles within a project team! [Kru98]

Taking thingsto the extreme, some development cultures dictate strict divisions of responsibility; coders aren't
allowed to talk to testers, who in turn aren't allowed to talk to the chief architect, and so on. Some organizations then
compound the problem by having different sub-teams report through separate management chains.

Itisamistaketo think that the activities of a project—andysis, design, coding, and testing—can happen in isolation.
They can't. These are different views of the same problem, and artificially separating them can cause aboatload of
trouble. Programmers who are two or three levels removed from the actua users of their code are unlikely to be
aware of the context in which their work is used. They will not be able to make informed decisions.

Tip 60

Organize Around Functiondity, Not Job Functions

Wefavor splitting teams functiondly. Divide your peopleinto small teams, each responsible for aparticular functiona
aspect of thefina system. L et the teams organi ze themsdvesinterndly, building on individua strengths asthey can.
Each team hasresponsihilities to othersin the project, as defined by their agreed-upon commitments. The exact set
of commitments changes with each project, as doesthe dlocation of people into teams.

Functionality here does not necessarily mean end-user use cases. The database access layer counts, as doesthe help
subsystem. We're looking for cohesive, largely self-contained teams of people—exactly the same criteriawe should
be using when we modularize code. There are warning sSignsthat the team organization iswrong—aclassic example
is having two subteams working on the same program module or class.

How doesthisfunctiona style of organization help? Organize our resources using the same techniques we use to
organize code, using techniques such as contracts (Design by Contract), decoupling (Decoupling and the Law of
Demeter), and orthogonality (Orthogondlity), and we help isolate the team as awhole from the effects of change. If
the user suddenly decides to change database vendors, only the database team should be affected. Should marketing
suddenly decide to use an off-the-shelf tool for the calendar function, the calendar group takes a hit. Properly
executed, thiskind of group approach can dramaticaly reduce the number of interactions between individuas work,
reducing time scales, increasing quality, and cutting down on the number of defects. Thisapproach canadsoleadtoa
more committed set of developers. Each team knows that they aone are responsible for a particular function, so they
fed more ownership of their output.

However, this approach works only with respons ble devel opers and strong project management. Creating a pool of
autonomous teams and | etting them loose without leadership is arecipe for disaster. The project needs at least two
"heads'—one technicd, the other administrative. The technica head sets the devel opment philosophy and style,
assgns respongbilities to teams, and arbitrates the inevitable " discussions' between people. The technica head dso
looks congtantly at the big picture, trying to find any unnecessary commonality between teamsthat could reduce the
orthogonality of the overdl effort. The administrative head, or project manager, schedules the resources that the
teams need, monitors and reports on progress, and helps decide priorities in terms of business needs. The
adminigtrative head might also act as the team'’s ambassador when communicating with the outside world.

Teams on larger projects need additiond resources: alibrarian who indexes and stores code and documentation, a
tool builder who provides common tools and environments, operationa support, and so on.

Thistype of team organization issimilar in spirit to the old chief programmer team concept, first documented in 1972
Bak72].

Automation

A great way to ensure both consistency and accuracy isto automate everything the team does. Why lay code out
manually when your editor can do it automatically as you type? Why complete test forms when the overnight build
can run tests automaticaly?

Automation isan essentid component of every project team—important enough for us to dedicate an entire section
toit, starting on the following page. To ensure that things get automated, appoint one or more team members as tool
builders to construct and deploy the tools that automate the project drudgery. Have them produce makefiles, shell
scripts, editor templates, utility programs, and the like.

Know When to Stop Adding Paint
Remember that teams are made up of individuas. Give each member the ability to shinein hisor her own way. Give

them just enough structure to support them and to ensure that the project ddivers againg its requirements. Then, like
the painter in Good-Enough Software, resist the temptation to add more paint.

Related sectionsinclude:

Software Entropy

Stone Soup and Boiled Frogs

Good-Enough Software

Communicate!

TheEvilsof Duplication

Orthogondity

Design by Contract

Decoupling and the Law of Demeter

Ubiguitous Automation

Challenges

Look around for successful teams outside the area of software development. What makes them successful ?
Do they use any of the processes discussed in this section?

Next time you Start aproject, try convincing peopleto brand it. Give your organization time to become used
to theides, and then do aquick audit to see what difference it made, both within the team and externally.

Team Algebra: In school, we are given problems such as"'If it takes 4 workers 6 hoursto dig aditch, how
long would it take 8 workers?' Inredl life, however, what factors affect the answer to: "If it takes 4
programmers 6 months to devel op an gpplication, how long would it take 8 programmers?’ In how many
scenariosisthe time actudly reduced?

| | @ve RuBoard

| | @ve RuBoard

Ubiquitous Automation

Civilization advances by extending the number of important operations we can perform without thinking.
Alfred North Whitehead

At the dawn of the age of automobiles, the instructions for starting aModd-T Ford were more than two pages long.
With modern cars, you just turn the key—the starting procedure is automatic and fool proof. A person following alist
of ingructions might flood the engine, but the automatic starter won't.

Although computing is ill anindustry a the Modd-T stage, we can't afford to go through two pages of ingtructions
again and again for some common operation. Whether it isthe build and release procedure, code review paperwork,
or any other recurring task on the project, it hasto be automatic. We may have to build the starter and fuel injector
from scratch, but onceit's done, we can just turn the key from then on.

In addition, we want to ensure consistency and repestability on the project. Manua procedures leave consistency up
to chance; repeatability isn't guaranteed, especialy if aspects of the procedure are open to interpretation by different
people.

All on Automatic

Wewere once at aclient ste where al the developers were using the same IDE. Their system administrator gave
each developer aset of ingtructions on installing add-on packagesto the IDE. These ingtructionsfilled many
pages—pages full of click here, scroll there, drag this, double-click that, and do it again.

Not surprisingly, every developer's machine was loaded dightly differently. Subtle differencesin the gpplication’'s
behavior occurred when different devel opers ran the same code. Bugs would appear on one machine but not on
others. Tracking down version differences of any one component usualy revedled asurprise.

Tip 61
Don't Use Manua Procedures
Peoplejust aren't as repeatable as computers are. Nor should we expect them to be. A shell script or batch file will

execute the same ingtructions, in the same order, time after time. It can be put under source control, so you can
examine changes to the procedure over timeaswell ("but it used to work...").

Another favorite tool of automationiscron (or "at" on Windows NT). It alows us to schedul e unattended tasks to
run periodicaly—usudly in the middle of the night. For example, the following crontab file specifiesthat aproject's

nightly command be run at five minutes past midnight every day, that the backup be run a 3:15 am. on weekdays,
and that expense_reports be run a midnight on thefirst of the month.

M N HOUR DAY MONTH DAYOFWEEK COMIVAND

* / proj ects/ Manhattan/ bi n/ nightly
15 3 * * 1-5 [usr/ 1 ocal /bin/backup
* / hone/ account i ng/ expense_reports

Using cron, we can schedule backups, the nightly build, Web site maintenance, and anything else that needsto be
done—unattended, automaticaly.

Compiling the Project

Compiling the project is achore that should be reliable and repesat-able. We generdly compile projects with
makefiles, even when using an | DE environment. There are severd advantagesin using makefiles. It isa scripted,
automatic procedure. We can add in hooks to generate code for us, and run regression tests automaticaly. IDEs
have their advantages, but with IDEsdoneit can be hard to achieve the level of automation that we're looking for.
We want to check out, build, test, and ship with asingle command.

Generating Code

In The Evils of Duplication, we advocated generating code to derive knowledge from common sources. We can
exploit make's dependency analysis mechanism to make this process easy. It's a pretty Ssmple matter to add rulesto
amakefile to generate a file from some other source automatically. For example, suppose we wanted to take an
XML file, generate a Javafile fromit, and compile the result.

. SUFFI XES: .Java .class . xni
.xm . java:

perl convert.pl $< > 3@
. Java. cl ass:

$(JAVAC) $(JAVAC FLAGS) $<

Type make test.class, and make will automaticaly look for afile named test.xml, build a.javafile by running a Perl
script, and then compile that file to produce test.class.

We can use the same sort of rulesto generate source code, header files, or documentation automatically from some
other form aswdll (see Code Generators).

Regression Tests

Y ou can aso use the makefile to run regression tests for you, either for an individua module or for an entire
subsystem. Y ou can easily test the entire project with just one command at the top of the source tree, or you can test
an individua module by using the same command in asingle directory. See Ruthless Tedling, for more on regression
tegting.

Recursive make

Many projects set up recursive, hierarchica for project builds and testing. But be aware of some
potentia problems.

make cal cul ates dependencies between the various targets it hasto build. But it can analyze only the
dependenciesthat exist within one single make invocation. In particular, arecursive make has no
knowledge of dependenciesthat other invocations of make may have. If you are careful and precise,
you can get the proper results, but it's easy to cause extrawork unnecessarily—or miss a dependency
and not recompile when it's needed.

In addition, build dependencies may not be the same as test dependencies, and you may need separate
hierarchies.

Build Automation

A build isaprocedure that takes an empty directory (and aknown compilation environment) and builds the project
from scratch, producing whatever you hope to produce as afind deliverable—a CD-ROM master image or a
sdf-extracting archive, for ingance. Typicaly aproject build will encompass the following steps.

1.
Check out the source code from the repository.

2.
Build the project from scratch, typically from atop-level makefile. Each build is marked with some form of
release or version number, or perhaps a date stamp.

3.
Create adigtributableimage. This procedure may entail fixing file ownership and permissions, and producing
al examples, documentation, README files, and anything else that will ship with the product, in the exact
format that will be required when you ship.[3]
[3] If you are producing a CD-ROM in 1SO9660 format, for example, you would run the program that produces a bit-for-bit image of the
9660 file system. Why wait until the night before you ship to make sure it works?

4.

Run specified tests (make test).

For mogt projects, thisleve of build isrun automaticaly every night. In thisnightly build, you will typicaly run more
complete tests than an individua might run while building some specific portion of the project. Theimportant point is
to havethefull build run all availabletests. Y ou want to know if aregression test failed because of one of today's
code changes. By identifying the problem close to the source, you stand a better chance of finding and fixing it.

When you don't run tests regularly, you may discover that the application broke due to a code change made three
months ago. Good luck finding that one.

Final Builds

Final builds, which you intend to ship as products, may have different requirements from the regular nightly build. A
find build may require that the repository be locked, or tagged with the release number, that optimization and debug
flags be set differently, and so on. We like to use a separate make target (such as makefina) that setsal of these
parameters at once.

Remember that if the product is compiled differently from earlier versons, then you must test againg this verson al
over agan.

Automatic Administrivia

Wouldn't it be niceif programmers could actualy devote dl of their timeto programming? Unfortunately, thisisrarely
the case. Thereis e-mail to be answered, paperwork to be filled out, documents to be posted to the Web, and so
on. You may decide to create ashell script to do some of the dirty work, but you still have to remember to run the
script when needed.

Because memory isthe second thing you lose as you age,[41 we don't want to rely on it too heavily. We can run
scripts to perform procedures for us automatically, based on the content of source code and documents. Our godl is
to maintain an automatic, unattended, content-driven workflow.

[4] What's the first? | forget.

Web Site Generation

Many development teams use an internal Web site for project communication, and wethink thisisagreat idea. But
we don't want to spend too much time maintaining the Web site, and we don't want to let it get stale or out of date.
Mideading information isworse than no information at al.

Documentation that is extracted from code, requirements analyses, design documents, and any drawings, charts, or
graphsdl need to be published to the Web on aregular basis. Welike to publish these documents automatically as
part of the nightly build or as ahook into the source code check-in procedure.

However it isdone, Web content should be generated automaticaly from information in the repository and published
without human intervention. Thisisredly another gpplication of the DRY principle: information exigsin oneform as
checked-in code and documents. The view from the Web browser is smply that—just aview. Y ou shouldn't have to
maintain that view by hand.

Any information generated by the nightly build should be accessble on the devel opment Web site: results of the build
itself (for example, the build results might be presented as a one-page summary that includes compiler warnings,
errors, and current status), regression tests, performance statistics, coding metrics and any other static analysis, and
soon.

Approval Procedures

Some projects have various administrative workflows that must be followed. For instance, code or design reviews
need to be scheduled and followed through, approvals may need to be granted, and so on. We can use
automation—and especidly the Web ste—to hel p ease the paperwork burden.

Suppose you wanted to automate code review scheduling and approva. Y ou might put aspecid marker in each
source codefile:

/* Status: needs_review */

A smple script could go through dl of the source code and look for al filesthat had a status of needs review,
indicating that they were ready to be reviewed. Y ou could then post alist of thosefiles asaWeb page, automatically
send e-mail to the gppropriate people, or even schedule a meeting automatically using some caendar software.

Y ou can set up aform on aWeb page for the reviewersto register approva or disapprova. After the review, the
Status can be automatically changed to reviewed. Whether you have a code walk-through with dl the participantsis
up to you; you can il do the paperwork automaticaly. (In an articlein the April 1999 CACM, Robert Glass
summarizes research that seemsto indicate that, while code ingpection is effective, conducting reviewsin meetingsis
not [Gla99a].)

The Cobbler's Children

The cobbler's children have no shoes. Often, people who devel op software use the poorest toolsto do the job.

But we have al the raw materials we need to craft better tools. We have cron. We have make, on both Windows
and Unix platforms. And we have Perl and other high-level scripting languages for quickly developing custom toals,
Web page generators, code generators, test harnesses, and so on.

Let the computer do the repetitious, the mundane—it will do a better job of it than we would. We've got more
important and more difficult thingsto do.

Related sectionsinclude:

The Cat Ate My Source Code

TheEvilsof Duplication

The Power of Plain Text

Shdl Games

Debugging

Code Generators

Pragmatic Teams

Ruthless Teding

[t's All Writing

Challenges

Look at your habits throughout the workday. Do you see any repetitive tasks? Do you type the same
sequence of commands over and over again?

Try writing afew shell scriptsto automate the process. Do you aways click on the same sequence of icons
repeatedly? Can you create amacro to do al that for you?

How much of your project paperwork can be automated? Given the high expense of programming staff, (5]
determine how much of the project's budget is being wasted on adminigtrative procedures. Can you justify
the amount of timeit would taketo craft an automated sol ution based on the overall cost savingsit would
achieve?

[5] For estimating purposes, you can figure an industry average of about US$100,000 per head—that's salary plus benefits, training, office
space and overhead, and so on.

| | @ve RuBoard

| | @ve RuBoard

Ruthless Testing

Most devel opers hate testing. They tend to test gently, subconscioudy knowing where the code will bresk and
avoiding the wesk spots. Pragmatic Programmers are different. We are driven to find our bugs now, so we don't
have to endure the shame of othersfinding our bugs later.

Finding bugsis somewhet like fishing with anet. We usefine, amdl nets (unit tests) to catch the minnows, and big,
coarse nets (integration tests) to catch the killer sharks. Sometimes the fish manage to escape, so we patch any holes
that wefind, in hopes of catching more and more dippery defects that are swimming about in our project pool.

Tip 62

Test Early. Test Often. Test Automeaticaly.

Wewant to start testing as soon as we have code. Those tiny minnows have anasty habit of becoming giant,
man-egting sharks pretty fast, and catching ashark is quite abit harder. But we don't want to have to do al that
testing by hand.

Many teams develop e aborate test plansfor their projects. Sometimesthey will even use them. But we've found that
teamsthat use automated tests have a much better chance of success. Tests that run with every build are much more
effective than test plansthat St on ashelf.

The earlier abug isfound, the cheaper it isto remedy. "Code alittle, test alittle” isapopular saying in the Smaltalk
world,[6] and we can adopt that mantra as our own by writing test code at the same time (or even before) we write
the production code.

[6] eXtreme Programming [URL 45] calls this concept "continuous Integration, relentless testing."

Infact, agood project may well have more test code than production code. The time it takes to produce this test
codeisworth the effort. It ends up being much chegper in the long run, and you actudly stand a chance of producing
aproduct with close to zero defects.

Additiondly, knowing that you've passed the test gives you a high degree of confidence that a piece of codeis"done.”
Tip 63

Coding Aint Done Til All the TestsRun

Just because you have finished hacking out a piece of code doesn't mean you can go tell your boss or your client that
it's done. It'snot. First of al, codeis never redly done. Moreimportantly, you can't claim that it is usable by anyone
until it passesdl of the availabletests.

We need to look at three main aspects of project-wide testing: what to test, how to test, and when to test.

What to Test

There are severd mgjor types of software testing that you need to perform:

Unit testing

Integration testing

Vdidation and verification

Resource exhaugtion, errors, and recovery

Performance testing

Usshility testing

Thislist isby no means complete, and some specidized projects will require various other types of testing aswell.
But it gives usagood starting point.

Unit Testing

A unit test is code that exercisesamodule. We covered thistopic by itself in Code That's Easy to Test. Unit testing
isthe foundation of al the other forms of testing that welll discussin this section. If the parts don't work by
themsdlves, they probably won't work well together. All of the modules you are using must passtheir own unit tests
before you can proceed.

Onceadl of the pertinent modules have passed their individua tests, you're ready for the next stage. Y ou need to test
how al the modules use and interact with each other throughout the system.

Integration Testing

Integration testing showsthat the mgor subsystems that make up the project work and play well with each other.
With good contractsin place and well tested, any integration issues can be detected easily. Otherwise, integration
becomes afertile breeding ground for bugs. In fact, it is often the single largest source of bugsin the system.

Integration testing isredlly just an extension of the unit testing we've described—only now you're testing how entire
subsystems honor their contracts.

Validation and Verification

As so0n as you have an executable user interface or prototype, you need to answer an al-important question: the
userstold you what they wanted, but isit what they need?

Doesit meet the functional requirements of the system? This, too, needsto betested. A bug-free system that answers
thewrong question isn't very useful. Be conscious of end-user access patterns and how they differ from devel oper
test data (for an example, see the story about brush strokes on page 92).

Resour ce Exhaustion, Errors, and Recovery

Now that you have a pretty good idea that the system will behave correctly under idedl conditions, you need to
discover how it will behave under real-world conditions. In thered world, your programs don't have limitless
resources,; they run out of things. A few limits your code may encounter include:

Memory

Disk space

CPU bandwidth

Wal-clock time

Disk bandwidth

Network bandwidth

Color palette

Video resolution

Y ou might actualy check for disk space or memory dlocation failures, but how often do you test for the others? Will
your gpplication fit on a640 x 480 screen with 256 colors? Will it run on a 1600 x 1280 screen with 24-bit color
without looking like a postage slamp? Will the batch job finish before the archive Sarts?

Y ou can detect environmenta limitations, such asthe video specifications, and adapt as appropriate. Not adl failures
arerecoverable, however. If your code detects that memory has been exhausted, your options are limited: you may
not have enough resources | eft to do anything except fail.

When the system doesfail, (71 will it fail gracefully? Will it try, asbest it can, to save its state and prevent |oss of
work? Or will it "GPF" or "core-dump" in the user's face?

[7] Our copy editor wanted us to change this sentence to " If the system does fail" We resisted.

Performance Testing

Performance testing, stress testing, or testing under load may be an important aspect of the project aswell.

AsK yoursdlf if the software meets the performance reguirements under real-world conditions—with the expected
number of users, or connections, or transactions per second. Isit scalable?

For some applications, you may need specialized testing hardware or software to smulate the load rediticaly.
Usability Testing

Usability testing is different from the types of testing discussed so far. It is performed with real users, under red
environmental conditions.

Look at usahility in terms of human factors. Were there any misunderstandings during requirements anaysis that need
to be addressed? Does the software fit the user like an extension of the hand? (Not only do we want our own tools
to fit our hands, but we want the tools we create for usersto fit their hands aswell.)

Aswith vdidation and verification, you need to perform usability testing as early asyou can, while thereis il timeto
make corrections. For larger projects, you may want to bring in human factors specidigs. (If nothing ese, it'sfunto
play with the one-way mirrors).

Failure to meet usability criteriaisjust asbig abug asdividing by zero.

How to Test

Wevelooked at what to test. Now well turn our attention to how to test, including:

Regresson testing

Tes data

Exercisng GUI systems

Tedting thetests

Tegting thoroughly

Design/M ethodology Testing

Can you test the design of the code itsalf and the methodology you used to build the software? After a
fashion, yesyou can. Y ou do thisby andyzing metrics—measurements of various aspects of the code.
The smplest metric (and often the least interesting) is lines of code—how big isthe code itself?

There are awide variety of other metrics you can use to examine code, including:

M cCabe Cyclomatic Complexity Metric (measures complexity of decision structures)

Inheritance fan-in (number of base classes) and fan-out (number of derived modules using this
one as a parent)

Response st (see Decoupling and the Law of Demeter)

Class coupling ratios (see[URL 48])

Some metrics are designed to give you a "passing grade,” while others are useful only by comparison.
That is, you calculate these metrics for every module in the system and see how a particular module
relatesto its brethren. Standard Statistical techniques (such as mean and standard deviation) are usually

used here.

If you find amodule whose metrics are markedly different from al the rest, you need to ask yoursdf if
that is appropriate. For some modules, it may be okay to "blow the curve.” But for those that don't have
agood excusg, it can indicate problems.

Regression Testing

A regression test compares the output of the current test with previous (or known) vaues. We can ensure that bugs
we fixed today didn't break things that were working yesterday. Thisisan important safety net, and it cuts down on
unpleasant surprises.

All of the tests we've mentioned so far can be run as regression tests, ensuring that we haven't lost any ground aswe
develop new code. We can run regressions to verify performance, contracts, validity, and so on.

Test Data

Where do we get the datato run all these tests? There are only two kinds of data: real-world data and synthetic data.
We actually need to use both, because the different natures of these kinds of datawill expose different bugsin our
software.

Redl-world data comes from some actua source. Possibly it has been collected from an existing system, a
competitor's system, or a prototype of some sort. It representstypical user data. The big surprises come asyou
discover what typical means. Thisismost likely to reved defects and misunderstandings in requirements andysis.

Synthetic datais artificidly generated, perhaps under certain statistical congtraints. Y ou may need to use synthetic
datafor any of thefollowing reasons.

Y ou need alot of data, possibly more than any real-world sample could provide. Y ou might be ableto use
the real-world data as a seed to generate alarger sample set, and tweak certain fiel ds that need to be unique.

Y ou need datato stress the boundary conditions. This datamay be completely synthetic: date fields
containing February 29, 1999, huge record sizes, or addresses with foreign postal codes.

Y ou need data that exhibits certain satistical properties. Want to see what happensif every third transaction
fails? Remember the sort agorithm that dowsto a crawl when handed presorted data? Y ou can present data
in random or sorted order to expose this kind of weakness.

Exercising GUI Systems

Testing GUI-intensive systems often requires specialized testing tools. These tools may be based on asmple event
capture/playback model, or they may require specialy written scriptsto drive the GUI. Some systems combine
elementsof both.

L ess sophisticated tools enforce a high degree of coupling between the version of software being tested and the test

script itsdlf: if you move adidog box or make abutton smaller, the test may not be ableto find it, and may fal. Most
modern GUI testing tools use a number of different techniques to get around this problem, and try to adjust to minor
layout differences.

However, you can't automate everything. Andy worked on a graphics system that alowed the user to create and
display nondeterminigtic visua effects which smulated various natural phenomena. Unfortunately, during testing you
couldn't just grab a bitmap and compare the output with a previous run, because it was designed to be different every
time. For Situations such as this one, you may have no choice but to rely on manua interpretation of test results.

One of the many advantages of writing decoupled code (see Decoupling and the Law of Demeter) ismore modular
testing. For instance, for data processing applications that have a GUI front end, your design should be decoupled

enough o that you can test the gpplication logic without having aGUI present. Thisideaiis smilar to testing your
subcomponents first. Once the application logic has been validated, it becomes easier to locate bugs that show up
with the user interface in place (it'slikely that the bugs were created by the user-interface code).

Testing the Tests

Because we can't write perfect software, it follows that we can't write perfect test software either. We need to test
thetests.

Think of our set of test suites as an eaborate security system, designed to sound the darm when abug shows up.
How better to test a security system than to try to bregk in?

After you have written atest to detect a particular bug, cause the bug deliberately and make sure the test complains.
Thisensuresthat the test will catch the bug if it happensfor red.

Tip 64

Use Saboteursto Test Your Testing

If you are really serious about testing, you might want to gppoint a project saboteur. The saboteur'sroleisto takea
Separate copy of the source tree, introduce bugs on purpose, and verify that the testswill catch them.

When writing tests, make sure that aarms sound when they should.

Testing Thoroughly

Once you are confident that your tests are correct, and are finding bugs you create, how do you know if you have
tested the code base thoroughly enough?

The short answer is"you don't," and you never will. But there are products on the market that can help. These
coverage analysis tools watch your code during testing and keep track of which lines of code have been executed
and which haven't. These tools help give you agenera fed for how comprehensive your testing is, but don't expect to
see 100% coverage.

Even if you do happen to hit every line of code, that's not the whole picture. What isimportant isthe number of states
that your program may have. States are not equivalent to lines of code. For instance, suppose you have afunction
that takes two integers, each of which can be a number from 0 to 999.

int test(int a, int b) {
return a/ (a + b);

}

In theory, thisthree-line function has 1,000,000 logica states, 999,999 of which will work correctly and one that will
not (when a+ b equals zero). Smply knowing that you executed thisline of code doesn't tell you that—you would
need to identify al possible states of the program. Unfortunately, in generd thisisareally hard problem. Hard asin,
"The sun will be acold hard lump before you can solveit.”

Tip 65

Test State Coverage, Not Code Coverage

Even with good code coverage, the data you use for testing still has a huge impact, and, more importantly, the order
in which you traverse code may have the largest impact of al.

When to Test

Many projectstend to leave testing to the last minute—right where it will be cut against the sharp edge of adeadline.
[8] We need to start much sooner than that. As soon as any production code exists, it needs to be tested.

[8] dead.line \ded-Iin\ n (1864) aline drawn within or around a prison that a prisoner passes at the risk of being shot— Webster's Collegiate Dictionary.

Most testing should be done automaticaly. It'simportant to note that by "automaticaly” we mean that the test results
areinterpreted automaticaly aswell. See Ubiquitous Automation, for more on this subject.

Weliketo test as frequently as we can, and always before we check code into the source repository. Some source
code control systems, such as Aegis, can do thisautomaticaly. Otherwise, we just type

% nmake test

Usudly, it isn't aproblem to run regressonson dl of theindividua unit tests and integration tests as often as needed.

But some tests may not be easily run on asuch afrequent basis. Stresstests, for instance, may require specia setup
or equipment, and some hand holding. These tests may be run less often—weekly or monthly, perhaps. Butitis
important that they be run on aregular, scheduled basis. If it can't be done automatically, then make sure it appears
on the schedule, with al the necessary resources alocated to the task.

Tightening the Net

Findly, wed like to reved the single most important concept in testing. It isan obvious one, and virtually every
textbook saysto do it thisway. But for some reason, most projects till do not.

If abug dipsthrough the net of existing tests, you need to add anew test to trgp it next time,

Tip 66

Find Bugs Once

Once a human tester finds abug, it should be the last time ahuman tester finds that bug. The automated tests should

be modified to check for that particular bug from then on, every time, with no exceptions, no matter how trivid, and
no matter how much the developer complains and says, "' Oh, that will never happen again.”

Because it will happen again. And we just don't have the time to go chasing after bugs that the automated tests could
have found for us. We have to spend our time writing new code—and new bugs.

Related sectionsinclude:

The Cat Ate My Source Code

Debuging

Decoupling and the Law of Demeter

Refactoring

Code That's Easy to Test

Ubiguitous Automation

Challenges

Can you automaticaly test your project? Many teams are forced to answer "no." Why?Isit too hard to
define the acceptabl e results? Won't this make it hard to prove to the sponsors that the project is "done'?

Isit too hard to test the application logic independent of the GUI? What does this say about the GUI? About

coupling?

4 FREWIOUS ||| MEXT k

| | @ve RuBoard

It's All Writing

The palest ink is better than the best memory.
Chinese Proverb

Typicaly, developers don't give much thought to documentation. At best it is an unfortunate necessity; at worst it is
treated as alow-priority task in the hope that management will forget about it at the end of the project.

Pragmatic Programmers embrace documentation as an integra part of the overall development process. Writing
documentation can be made easier by not duplicating effort or wasting time, and by keeping documentation close at
hand—in the codeitsdlf, if possible,

These aren't exactly origind or novel thoughts; the idea of wedding code and documentation appearsin Donad
Knuth'swork on literate programming and in Sun's JavaDoc utility, among others. We want to downplay the
dichotomy between code and documentation, and instead treat them as two views of the same model (see It'sJust a
View). Infact, wewant to go alittle further and apply all of our pragmatic principlesto documentation aswell asto
code.

Tip 67

Treat English as Just Another Programming Language

There are basically two kinds of documentation produced for aproject: internd and externd. Internal documentation
includes source code comments, design and test documents, and so on. Externa documentation is anything shipped
or published to the outsde world, such as user manuals. But regardless of the intended audience, or the role of the

writer (developer or technical writer), all documentation isamirror of the code. If theré's adiscrepancy, the codeis
what matters—for better or worse.

Tip 68

Build Documentation In, Don't Bolt It On

Well sart with internal documentation.

Commentsin Code

Producing formatted documents from the comments and declarations in source code isfairly straightforward, but first
we have to ensure that we actudly have commentsin the code. Code should have comments, but too many
comments can bejust as bad astoo few.

In generd, comments should discuss why something is done, its purpose and its goal. The code dready shows how it
isdone, so commenting on thisis redundant—and isaviolation of the DRY principle.

Commenting source code gives you the perfect opportunity to document those eusive bits of a project that can't be
documented anywhere €lse: engineering trade-offs, why decisions were made, what other dternativeswere
discarded, and so on.

We liketo see a smple module-level header comment, comments for significant dataand type declarations, and a
brief per-class and per-method header, describing how the function is used and anything thet it doesthat is not
obvious

Variable names, of course, should be well chosen and meaningful. foo, for instance, is meaningless, asisdoit or
manager or stuff. Hungarian notation (where you encode the variabl€s type information in the nameitsdf) is utterly
ingppropriate in object-oriented systems. Remember that you (and others after you) will be reading the code many
hundreds of times, but only writing it afew times. Take the time to spell out connectionPool instead of cp.

Even worse than meaningless names are misleading names. Have you ever had someone explain inconsistenciesin
legacy code such as, "Theroutine called getData redly writes data to disk"? The human brain will repeatedly foul this
up—it'scalled the Stroop Effect [Str35]. Y ou can try the following experiment yourself to see the effects of such
interference. Get some colored pens, and use them to write down the names of colors. However, never write a color
name using that color pen. Y ou could write theword "blue" in green, the word "brown" in red, and so on.
(Alternatively, we have a sample set of colors aready drawn on our Web Site at

http:/Aww.pragmati cprogrammer.com.) Once you have the color names drawn, try to say aoud the color with
which each word isdrawn, asfast asyou can. At some point you'l trip up and start reading the names of the colors,
and not the colors themsdlves. Names are degply meaningful to your brain, and mideading names add chaosto your
code.

Y ou can document parameters, but ask yoursdf if it isredly necessary in dl cases. Theleve of comment suggested
by the JavaDoc tool seems gppropriate:

/**
Find the peak (highest) value within a specified date
range of sanpl es.

@aram aRange Range of dates to search for data.

@aram aThreshold M ni mum val ue to consi der.

@eturn the value, or <code>null</code> if no val ue found
greater than or equal to the threshold.

L S T

*/
public Sanpl e findPeak(Dat eRange aRange, doubl e aThreshol d);

Herésalist of thingsthat should not gppear in source comments.

http://www.pragmaticprogrammer.com/default.htm
http://www.pragmaticprogrammer.com

A ligt of the functions exported by codein thefile. There are programsthat anayze sourcefor you.
Usethem, and the list is guaranteed to be up to date.

Revision history. Thisiswhat source code control systems are for (see Source Code Control). However,
it can be useful to include information on the date of last change and the person who madeit.[9]

[9] This kind of information, as well as the filename, is provided by the RCS Id tag.

A list of other filesthisfileuses. Thiscan be determined more accurately using autometic tools.

Thenameof thefile. If it must appear inthefile, don't maintain it by hand. RCS and smilar systems can
keep thisinformation up to date automaticdly. If you move or rename the file, you don't want to have to
remember to edit the header.

One of the most important pieces of information that should appear in the source file is the author's name—not
necessarily who edited thefilelast, but the owner. Attaching respons bility and accountability to source code does
wonders in keegping people honest (see Pride and Prejudice).

The project may aso require certain copyright notices or other lega boilerplate to appear in each sourcefile. Get
your editor to insert these for you automatically.

With meaningful commentsin place, tools such as JavaDoc [URL 7] and DOC++ [URL 21] can extract and format
them to automaticaly produce API-level documentation. Thisis one specific example of amore genera technique we
use—executable documents.

Executable Documents

Suppose we have a specification that lists the columns in a database table. Well then have a separate set of SQL
commandsto creste the actud table in the database, and probably some kind of programming language record
sructure to hold the contents of arow in the table. The same information is repeated three times. Change any one of
these three sources, and the other two areimmediately out of date. Thisisaclear violation of the DRY principle.

To correct this problem, we need to choose the authoritative source of information. This may be the specification, it
may be a database schematool, or it may be some third source atogether. Let's choose the specification document
asthe source. It'snow our model for this process. We then need to find away to export the information it contains
asdifferent views—a database schema and a high-level language record, for example.[10]

[10] See It's Just a View, for more on models and views.

If your document is stored as plain text with markup commands (usng HTML, LaTeX, or troff, for example), then
you can use tools such as Perl to extract the schemaand reformat it automatically. If your document isin aword
processor's binary format, then see the box on the following page for some options.

Y our document isnow an integral part of the project development. The only way to change the schemaisto change
the document. Y ou are guaranteeing that the specification, schema, and code dl agree. Y ou minimize the amount of
work you haveto do for each change, and you can update the views of the change automatically.

What if My Document Isn't Plain Text?

Unfortunately, more and more project documents are now being written using world processors that
store the file on disk in some proprietary format. We say "unfortunately" because this severdly restricts
your optionsto process the document automaticaly. However, you still have acouple of options:

Writemacros. Most sophisticated word processors now have a macro language. With some
effort you can program them to export tagged sections of your documents into the aternative
formsyou need. If programming at thisleve istoo painful, you could aways export the
appropriate section into astandard format plain text file, and then use atool such asPerl to
convert thisinto thefina forms.

Make the document subordinate. Rather than have the document as the definitive source,
use another representation. (In the database example, you might want to use the schemaasthe
authoritative information.) Then write atool that exportsthisinformation into aform that the
document can import. Be careful, however. Y ou need to ensure that thisinformation isimported
every time the document is printed, rather than just once when the document is created.

We can generate API-level documentation from source code using tools such as JavaDoc and DOC++ inasmilar
fashion. The modd isthe source code: one view of the model can be compiled; other views are meant to be printed
out or viewed on the Web. Our god isawaysto work on the model—whether the model isthe code itsdf or some
other document—and have dl views updated automatically (see Ubiguitous Automeation, for more on automatic
processes).

Suddenly, documentation isn't so bad.

Technical Writers

Up until now, weve talked only about internal documentation—uwritten by the programmers themsalves. But what
happens when you have professiona technical writersinvolved in the project? All too often, programmers just throw
materia "over thewdl" to technica writersand let them fend for themselves to produce user manuass, promotional
pieces, and so on.

Thisisamistake. Just because programmers aren't writing these documents doesn't mean that we can forsake
pragmatic principles. We want the writers to embrace the same basic principlesthat a Pragmatic Programmer

does—especidly honoring the DRY principle, orthogondity, the mode-view concept, and the use of automation and
scripting.

Print It or Weave It

One problem inherent with published, paper documentation isthat it can become out of date as soon asit's printed.
Documentation of any formisjust asnapshot.

So wetry to produce dl documentation in aform that can be published online, on the Web, complete with
hyperlinks. It's easier to keep this view of the documentation up to date than to track down every existing paper
copy, burn it, and reprint and redistribute new copies. It's dso a better way to address the needs of awide audience.
Remember, though, to put adate stamp or version number on each Web page. Thisway the reader can get agood
idea of what's up to date, what's changed recently, and what hasn't.

Many times you need to present the same documentation in different formats. a printed document, Web pages, online
help, or perhaps adide show. Thetypica solution relies heavily on cut-and-paste, creating anumber of new
independent documents from the origind. Thisisabad idea: a document's presentation should be independent of its
content.

If you are using amarkup system, you have the flexibility to implement as many different output formats as you need.
Y ou can choose to have

<Hl1>Chapter Title</Hl>

generate anew chapter in the report version of the document and title anew didein the dide show. Technologies
such as XSL and CSS[11] can be used to generate multiple output formats from this one markup.

[11] eXtensible Style Language and Cascading Style Sheets, two technologies designed to help separate presentation from content.

If you are usng aword processor, you'll probably have smilar capabilities. If you remembered to use stylesto
identify different document elements, then by applying different style sheets you can dragticaly dter thelook of the
fina output. Most word processors now alow you to convert your document to formats such asHTML for Web

publishing.

Markup Languages

Findly, for large-scale documentation projects, we recommend looking at some of the more modern schemes for
marking up documentation.

Many technical authors now use DocBook to define their documents. DocBook is an SGM L -based markup
standard that carefully identifies every component in adocument. The document can be passed through a DSSSL
processor to render it into any number of different formats. The Linux documentation project uses DocBook to

publishinformationin RTF, TE}(, info, PostScript, and HTML formats.

Aslong asyour origind markup isrich enough to express dl the concepts you need (including hyperlinks), trandation
to any other pub-lishable form can be both easy and automatic. Y ou can produce online help, published manuas,
product highlights for the Web ste, and even atip-a-day cdendar, dl from the same source—which of courseis
under source control and is built dong with the nightly build (see Ubiquitous Automation).

Documentation and code are different views of the same underlying model, but the view is all that should be different.
Don't let documentation become a second-class citi zen, banished from the main project workflow. Treat
documentation with the same care you treat code, and the users (and maintainers who follow) will Sing your praises.

Related sectionsinclude:

TheEvilsof Duplication

Orthogondity

The Power of Plain Text

Source Code Control

It'sJust aView

Programming by Coincidence

The Requirements Pit

Ubiguitous Automation

Challenges

Did you write an explanatory comment for the source code you just wrote? Why not? Pressed for time? Not
aureif the code will realy work—are you just trying out an idea as a prototype? Y ou'll throw the code away
afterwards, right? It won't make it into the project uncommented and experimenta, will it?

Sometimesit is uncomfortable to document the design of source code because the design isn't clear in your
mind; it's<till evolving. Y ou don't fed that you should waste effort describing what something does until it
actudly doesit. Does this sound like programming by coincidence (page 172)?

| | @ve RuBoard

| | @ve RuBoard HE

Great Expectations

Be astonished, O ye heavens, at this, and be horribly afraid...
Jeremiah 2:12

A company announces record profits, and its share price drops 20%. The financia newsthat night explainsthat the
company failed to meet andysts expectations. A child opens an expensive Christmas present and burstsinto
tears—it wasn't the cheap dall the child was hoping for. A project team works miracles to implement a phenomenally
complex gpplication, only to have it shunned by its users because it doesn't have ahelp system.

In an abstract sense, an application is successtul if it correctly implementsits specifications. Unfortunately, this pays
only abdtract hills.

In redlity, the success of aproject is measured by how well it meets the expectations of itsusers. A project thet fals
below their expectationsis deemed afailure, no matter how good the ddliverable isin absolute terms. However, like
the parent of the child expecting the cheap doll, go too far and you'll be afailure, too.

Tip 69

Gently Exceed Y our Users Expectations

However, the execution of thistip requires somework.

Communicating Expectations

Usersinitiadly cometo you with some vison of what they want. It may be incomplete, inconsistent, or technically
impossible, but itis theirs, and, likethe child at Christmas, they have some emotion invested iniit. Y ou cannot just
ignoreit.

Asyour understanding of their needs develops, you'l find areas where their expectations cannot be met, or where
their expectations are perhaps too conservative. Part of your role isto communicate this. Work with your users so
that their understanding of what you'll be delivering is accurate. And do this throughout the devel opment process.
Never lose Sght of the business problems your gpplication isintended to solve.

Some consultants call this process "managing expectations'—actively controlling what users should hope to get from
their systems. Wethink thisis a somewhat ditist position. Our roleis not to control the hopes of our users. Instead,
we need to work with them to come to a common understanding of the development process and thefina
dedliverable, dong with those expectations they have not yet verbaized. If the team is communicating fluently with the

outside world, this process is amost automatic; everyone should understand what's expected and how it will be built.

There are some important techniques that can be used to facilitate this process. Of these, Tracer Bullets, and
Prototypes and Post-it Notes, are the most important. Both |et the team construct something that the user can see.
Both areidea ways of communicating your understanding of their requirements. And both let you and your users
practice communicating with each other.

The ExtraMile

If youwork closdy with your users, sharing their expectations and communicating what you're doing, then there will
be few surprises when the project gets delivered.

ThisisaBAD THING. Try to surprise your users. Not scare them, mind you, but delight them.

Givethem that little bit more than they were expecting. The extra bit of effort it requires to add some user-oriented
feature to the sysem will pay for itsdf time and time again in goodwill.

Listen to your users asthe project progresses for clues about what featureswould redlly delight them. Some things
you can add relatively easly that look good to the average user include:

Bdloon or Tool Tip help

Keyboard shortcuts

A quick reference guide as a supplement to the user's manual

Colorization

Logfileandyzers

Automated ingtdlation

Toolsfor checking theintegrity of the system

The ability to run multiple versons of the system for training

A splash screen customized for their organization

All of thesethings arerdatively superficid, and don't redly overburden the system with feature bloat. However, each
tellsyour usersthat the development team cared about producing a great system, one that was intended for real use.
Just remember not to break the system adding these new features.

Related sectionsinclude:

Good-Enough Software

Tracer Bullets

Prototypes and Post-it Notes

The Requirements Pit

Challenges

Sometimes the toughest critics of aproject are the people who worked on it. Have you ever experienced
disappointment that your own expectations weren't met by something you produced? How could that be?
Maybe there's more than logic a work here.

What do your users comment on when you deliver software? Istheir attention to the various areas of the
gpplication proportiond to the effort you invested in each? What delights them?

| | @ve RuBoard

| | @ve RuBoard

Pride and Pregjudice
You have delighted us long enough.

Jane Austen, Pride and Prejudice

Pragmatic Programmers don't shirk from responsibility. Instead, we rejoice in accepting challenges and in making our
expertise well known. If we are responsible for adesign, or apiece of code, we do ajob we can be proud of .

Tip 70

Sign Y our Work

Craftsmen of an earlier age were proud to sign their work. Y ou should be, too.

Project teams are still made up of people, however, and this rule can cause trouble. On some projects, the idea of
code owner ship can cause cooperation problems. People may becometerritoria, or unwilling to work on common
foundation eements. The project may end up like abunch of insular little fiefdoms. Y ou become prejudiced in favor
of your code and against your coworkers.

That's not what we want. Y ou shouldn't jedoudy defend your code againgt interlopers; by the same token, you
should treat other peopl€'s code with respect. The Golden Rule (Do unto others as you would have them do unto
you") and afoundation of mutua respect among the developersis critical to make thistip work.

Anonymity, especidly on large projects, can provide abreeding ground for doppiness, mistakes, doth, and bad
code. It becomes too easy to see yourself asjust acog in the whed, producing lame excuses in endless status reports
instead of good code.

While code must be owned, it doesn't have to be owned by anindividua. In fact, Kent Beck's successful eXtreme
Programming method [URL 45] recommends communa ownership of code (but this also requires additional
practices, such aspair programming, to guard against the dangers of anonymity).

Wewant to see pride of ownership. "'l wrotethis, and | stand behind my work." Y our signature should cometo be
recognized as an indicator of quality. People should see your name on a piece of code and expect it to be solid, well
written, tested, and documented. A redly professiond job. Written by ared professional.

A Pragmatic Programmer.

| | @ve RuBoard

Appendix A. Resour ces

The only reason we were able to cover so much ground in this book isthat we viewed many of our subjectsfrom a
high dtitude. If wed given them the in-depth coverage they deserved, the book would have been ten timeslonger.

We darted the book with the suggestion that Pragmeatic Programmers should dways be learning. In this appendix
weve listed resources that may help you with this process.

In the section Professiona Societies, we give details of the IEEE and the ACM. We recommend that Pragmatic
Programmersjoin one (or both) of these societies. Then, in Building a Library, we highlight periodicas, books, and
Web stesthat we fed contain high-quality and pertinent information (or that are just plain fun).

Throughout the book we referenced many software resources accessible viathe Internet. In the Internet Resources
section, we list the URL s of these resources, aong with a short description of each. However, the nature of the Web
means that many of these links may well be stale by the time you read thisbook. Y ou could try one of the many
search engines for amore up-to-date link, or visit our Web site at www.pragmaticprogrammer.com and check our
links section.

Findly, this appendix contains the book's bibliography.

| | @ve RuBoard

http://www.pragmaticprogrammer.com/default.htm

| | @ve RuBoard

Professional Societies

There are two world-class professiona societies for programmers. the Association for Computing Machinery (ACM)
[1] and the IEEE Computer Society.[2] We recommend that al programmers belong to one (or both) of these
societies. In addition, devel opers outside the United States may want to join their national societies, such asthe BCS
in the United Kingdom.

[1] ACM Member Services, PO Box 11414, New York, NY 10286, USA.

Www.acm.org

[2] 1730 Massachusetts Avenue NW, Washington, DC 20036-1992, USA.

Www.computer.org

Membership in aprofessona society has many benefits. The conferences and local mesetings give you great
opportunities to meet people with similar interests, and the specid interest groups and technica committees give you
the opportunity to participate in setting standards and guiddines used around the world. Y ou'll dso get alot out of
their publications, from high-level discussons of industry practice to low-level computing theory.

| | @ve RuBoard

http://www.acm.org/default.htm
http://www.computer.org/default.htm

| | @ve RuBoard

BuildingaLibrary

We're big on reading. Aswe noted in Y our Knowledge Portfolio, agood programmer isaways learning. Keeping
current with books and periodicas can help. Here are some that we like.

Periodicals

If yourelike us, you'll save old magazines and periodicds until they're piled high enough to turn the bottom onesto
flat sheets of diamond. This meansit's worth being fairly selective. Here are afew periodicas we read.

|[EEE Computer. Sent to members of the IEEE Computer Society, Computer hasa practica focusbut is
not afraid of theory. Some issues are oriented around a theme, while others are smply collections of
interesting articles. This magazine has agood signd-to-noiserétio.

|EEE Software. Thisisanother great bimonthly publication of the IEEE Computer Society aimed at
software practitioners.

Communicationsof the ACM. Thebasic magazine received by al members of the ACM, CACM has
been astandard in the industry for decades, and has probably published more semind articles than any other
source.

SIGPLAN. Produced by the ACM Specid Interest Group on Programming Languages, SSGPLAN isan
optiond addition to your ACM membership. It isoften used for publishing language specifications, dong with
articles of interest to everyone who likes|ooking deeply into programming.

Dr. DobbsJournal. A monthly magazine, available by subscription and on newsstands, Dr. Dobbs is
quirky, but has articles ranging from bit-leve practice to heavy theory.

ThePerl Journal. If you like Perl, you should probably subscribeto The Perl Journal (www.tpj.com).

Softwar e Development Magazine. A monthly magazine focusing on genera issues of project
management and software devel opment.

Weekly Trade Papers

There are severa weekly newspapers published for developers and their managers. These papers arelargely a
collection of company press rel eases, redressed as articles. However, the content is till valuable—it lets you track
what is going on, keep abreast of new product announcements, and follow industry aliances asthey are forged and
broken. Don't expect alot of in-depth technical coverage, though.

http://www.tpj.com/default.htm

Books
Computing books can be expensive, but choose carefully and they're aworthwhile investment. Here are ahandful of
the many welike.

Analysisand Design

Object-Oriented Softwar e Construction, 2nd Edition. Bertrand Meyer's epic book on the fundamentals
of object-oriented development, all in about 1,300 pages [Mey97b].

Design Patterns. A design pattern describes away to solve a particular class of problemsat a higher level
than a programming language idiom. This now-classc book [GHJV95] by the Gang of Four describes 23
basic design patterns, including Proxy, Vidtor, and Singleton.

Analysis Patterns. A treasuretrove of high-leve, architectura patternstaken from awide variety of
rel-world projects and distilled in book form. A relatively quick way to gain theinsght of many years of
modeling experience [Fow96].

Teams and Projects

TheMythical Man Month. Fred Brooks classic on the perils of organizing project teams, recently
updated [Bro95].

Dynamics of Software Development. A seriesof short essays on building softwarein large teams,
focusing on the dynamics between team members, and between the team and the rest of the world [M cC95].

Surviving Object-Oriented Projects: A Manager's Guide. Alistair Cockburn's'reports from the
trenches’ illustrate many of the perilsand pitfals of managing an OO project— especialy your first one. Mr.
Cockburn providestips and techniquesto get you through the most common problems [Coc97b].

Specific Environments

Unix. W. Richard Stevens has severd excellent booksincluding Advanced Programming in the Unix
Environment and the Unix Network Programming books [Ste92, Ste98, Ste99].

Windows. Marshdl Brain's Win32 System Services [Brads] isaconcise reference to the low-level APIs.
Charles Petzold's Programming Windows [Pet98] isthe bible of Windows GUI devel opment.

C++. Assoon asyou find yourself on a C++ project, run, don't walk, to the bookstore and get Scott
Meyer's Effective C++, and possibly More Effective C++ [Mey97a, Mey96]. For building systems of

any appreciable size, you need John Lakos Large-Scale C++ Software Design [Lak96]. For advanced
techniques, turn to Jm Coplien's Advanced C++ Programming Styles and Idioms [Cop92],

In addition, the O'Rellly Nutshell series (www.ora.com) gives quick, comprehengve treatments of miscellaneous
topics and languages such as perl, yacc, sendmail, Windows internd's, and regular expressions.

TheWeb

Finding good content on the Web is hard. Here are severd linksthat we check at least once aweek.

Slashdot. Billed as"Newsfor nerds. Stuff that matters,” Slashdot is one of the net homes of the Linux
community. Aswell asregular updates on Linux news, the Site offersinformation on technologiesthat are
cool and issuesthat affect developers.

www.dashdot.org

CetusLinks. Thousands of links on object-oriented topics.

www.cetus-links.org

WikiWikiWeb. The Portland Pattern Repository and patterns discussion. Not just a great resource, the
WikiWikiWeb steisan interesting experiment in collective editing of idess.

WWW.C2.com
| | @ve RuBoard

http://www.ora.com/default.htm
http://www.slashdot.org/default.htm
http://www.cetus-links.org/default.htm
http://www.c2.com/default.htm

| | @ve RuBoard

| nter net Resour ces

Thelinks below areto resources available on the Internet. They were valid at the time of writing, but (the Net being
what it is) they may well be out of date by the time you read this. If S0, you could try agenerd search for the
filenames, or cometo the Pragmatic Programmer Web site (www.pragmeticprogrammer.com) and follow our
links

Editors

Emacsand vi are not the only cross-platform editors, but they are fredly available and widdly used. A quick scan
through amagazine such as Dr. Dobbs will turn up severa commercid dternatives.

Emacs

Both Emacs and XEmacs are available on Unix and Windows platforms.

[URL 1] The Emacs Editor

WwWw.gnu.org

The ultimate in big editors, containing every feature that any editor has ever had, Emacs has a near-verticd learning
curve, but repays handsomely once you've mastered it. It also makes agreat mall and news reader, address book,
caendar and diary, adventure game, ...

[URL 2] The XEmacs Editor

WWW.XEMACS.0rg

Spawned from the original Emacs some years ago, XEmacsis reputed to have cleaner internals and a better-looking
interface.

Vi

Thereareat least 15 different vi clones available. Of these, vim is probably ported to the most platforms, and so
would be agood choice of editor if you find yoursalf working in many different environments.

[URL 3] TheVim Editor

http://www.pragmaticprogrammer.com/default.htm
http://www.gnu.org/default.htm
http://www.xemacs.org/default.htm

ftp://ftp.fu-berlin.de/misc/editorsivim

From the documentation: "There are alot of enhancements above vi: multi level undo, multi windows and buffers,
syntax highlighting, command line editing, filename completion, on-line hep, visuad sdlection, etc...."

[URL 4] The elvis Editor

www.fh-wedd .de/elvis

An enhanced vi clone with support for X.

[URL 5] EmacsViper Mode

http:/Amww.cs.sunysh.edu/~kifer/emacs.html

Viper isasat of macros that make Emacs ook like vi. Some may doubt the wisdom of taking the world's largest
editor and extending it to emulate an editor whose strength isits compactness. Others claim it combines the best of
both worlds.

Compilers, Languages, and Development Tools

[URL 6] The GNU C/C++ Compiler

www.ff.org/software/gec/gec.html

One of the most popular C and C++ compilers on the planet. It also does Objective-C. (At the time of writing, the
egces project, which previoudy splintered from gec, isin the process of merging back into the fold.)

[URL 7] The Java Language from Sun

Java.aun.com

Home of Java, including downloadable SDK's, documentation, tutorials, news, and more.

ftp://ftp.fu-berlin.de/misc/editors/vim
http://www.fh-wedel.de/elvis
http://www.cs.sunysb.edu/~kifer/emacs.html
http://www.fsf.org/software/gcc/gcc.html
http://../java.sun.com/default.htm
ftp://ftp.fu-berlin.de/misc/editors/vim
http://www.cs.sunysb.edu/~kifer/emacs.html

[URL 8] Perl Language Home Page

www.perl.com

O'Rellly hosts this set of Peri-related resources.

[URL 9] The Python Language

www.python.org

The Python object-oriented programming language isinterpreted and interactive, with adightly quirky syntax and a
wide and loyd following.

[URL 10] SmallEiffe

Smd|Eiffd.loriafr

The GNU Eiffd compiler runs on any machine that hasan ANSI C compiler and a Posix runtime environment.

[URL 11] I SE Eiffd

www.effd.com

Interactive Software Engineering isthe originator of Design by Contract, and sdllsacommercid Eiffd compiler and
related tools.

[URL 12] Sather

www..ics.berkel ey.edu/~sather

Sather isan experimental language that grew out of Eiffd. It aimsto support higher-order functions and iteration
abstraction aswell as Common Lisp, CLU, or Scheme, and to be as efficient as C, C++, or Fortran.

[URL 13] VisualWorks

http://www.perl.com/default.htm
http://www.python.org/default.htm
http://../smalleiffel.loria.fr/default.htm
http://www.eiffel.com/default.htm
http://www.icsi.berkeley.edu/~sather

www.objectshare.com

Home of the VisuaWorks Smdltalk environment. Noncommercia versonsfor Windows and Linux are availablefor
free

[URL 14] The Squeak L anguage Environment

sgueak.cs.uiuc.edu

Squeek isafredy available, portable implementation of Smalltalk-80 written initself; it can produce C code output
for higher performance.

[URL 15] The TOM Programming L anguage

www.gerbil.org/tom

A very dynamic language with rootsin Objective-C.

[URL 16] The Beowulf Project

www.beowulf.org

A project that builds high-performance computers out of networked clusters of inexpensive Linux boxes.

[URL 17] iContract—Design by Contract Tool for Java

www.religble-systems.com

Design by Contract formalism of preconditions, postconditions, and invariants, implemented as a preprocessor for
Java. Honors inheritance, implements exigtential quantifiers, and more.

[URL 18] Nana—L ogging and Assertionsfor C and C++

http://www.objectshare.com/default.htm
http://../squeak.cs.uiuc.edu/default.htm
http://www.gerbil.org/tom
http://www.beowulf.org/default.htm
http://www.reliable-systems.com/default.htm

www.cs.ntu.edu.auwhomepages/pjm/nana-home/index.html

Improved support for assertion checking and logging in C and C++. It also provides some support for Design by
Contract.

[URL 19] DDD-Data Display Debugger

www.cs.tu-bs.de/softech/ddd

A freegraphica front end for Unix debuggers.

[URL 20] John Brant's Refactoring Browser

s-www.cs.uiuc.edu/usergbrant/Refactory

A popular refactoring browser for Smalltalk.

[URL 21] DOC++ Documentation Gener ator

www.zib.de/Visua/software/doc++index.html

DOC++ isadocumentation system for C/C++ and Javathat generates both KX and HTML output for
sophisticated online browsing of your documentation directly from the C++ header or Java classflies.

[URL 22] xUnit—Unit Testing Framework

www. X Progranming.com

A smple but powerful concept, the xUnit unit testing framework provides a consstent platform for testing software
written in avariety of languages.

[URL 23] TheTcl Language

WWW.SCriptics.com

http://www.cs.ntu.edu.au/homepages/pjm/nana-home/index.html
http://www.cs.tu-bs.de/softech/ddd
http://../st-www.cs.uiuc.edu/users/brant/Refactory
http://www.zib.de/Visual/software/doc++/index.html
http://www.xprogranming.com/default.htm
http://www.scriptics.com/default.htm

Tcl ("Tool Command Language") is a scripting language designed to be easy to embed into an gpplication.

[URL 24] Expect—Automate I nter action with Programs

expect.nist.gov

Anextenson built on Tcl [URL 23], expect allows you to script interaction with programs. Aswell as helping you
write command fliesthat (for example) fetch files from remote servers or extend the power of your shell, expect can
be useful when performing regression testing. A graphical version, expectk, lets you wrap non-GUI gpplicationswith
awindowing front end.

[URL 25] T Spaces

www.a maden.ibm.com/cs/T Spaces

From their Web page: " T Spacesisanetwork communication buffer with database capabilities. It enables

communi cation between gpplications and devicesin anetwork of heterogeneous computers and operating systems. T
Spaces provides group communication services, database services, URL-based file transfer services, and event
notification services™”

[URL 26] javaCC—Java Compiler-Compiler

WWW.metamata.com/javacc

A parser generator that istightly coupled to the Javalanguage.

[URL 27] The bison Parser Generator

www.gnu.org/software/bisorn/bison.html

bison takes an input grammar specification and generatesfrom it the C source code of a suitable parser.

[URL 28] SWIG—Simplified Wrapper and I nterface Generator

WWW.SWig.org

http://../expect.nist.gov/default.htm
http://www.almaden.ibm.com/cs/TSpaces
http://www.metamata.com/javacc
http://www.gnu.org/software/bison/bison.html
http://www.swig.org/default.htm

SWIG isasoftware development tool that connects programs written in C, C++, and Objective-C with avariety of
high-level programming languages such as Perl, Python, and Tcl/Tk, aswell as Java, Eiffel, and Guile.

[URL 29] The Object Management Group, Inc.

Www.0omg.org

The OMG isthe steward of various specifications for producing distributed object-based systems. Their work
includes the Common Object Request Broker Architecture (CORBA) and the Internet Inter-ORB Protocol (110P).
Combined, these specifications make it possble for objects to communicate with each other, even if they are written
in different languages and run on different types of computers.

Unix ToolsUnder DOS

[URL 30] The UWIN Development Tools

www.gtlinc.com/Products/Uwin/uwin.htm

Global Technologies, Inc., Old Bridge, NJ

The UWIN package provides Windows Dynamic Link Libraries (DLLs) that emulate alarge portion of the Unix C
level library interface. Using thisinterface, GTL has ported alarge number of Unix command-line toolsto Windows.
Seealso [URL 31].

[URL 31] The Cygnus Cygwin Tools

sourceware.cygnus.com/cygwin/

Cygnus Solutions, Sunnyvale, CA

The Cygnus package aso emulates the the Unix C library interface, and provides alarge array of Unix command-line
tools under the Windows operating system.

[URL 32] Perl Power Tools

http://www.omg.org/default.htm
http://www.gtlinc.com/Products/Uwin/uwin.html
http://../sourceware.cygnus.com/cygwin/default.htm

www.perl.com/pub/language/ppt/

A project to remplement the classic Unix command set in Perl, making the commands available on dl platformsthat
support Perl (and that'salot of platforms).

Sour ce Code Control Tools

[URL 33] RCS—Revision Control System

prep.a.mit.edu

GNU source code control system for Unix and Windows NT.

[URL 34] CVS—Concurrent Version System

WwWW.cvshome.com

Fredly available source code control system for Unix and Windows NT. Extends RCS by supporting a client-server
model and concurrent accessto files.

[URL 35] Aegis Transaction-Based Configuration M anagement

http://Amww.canb.auug.org.aw/~millerp/aegishtml

A process-oriented revision control tool that imposes project standards (such as verifying that checked-in code
passes tests).

[URL 36] ClearCase

www.rationa.com

Version control, workspace and build management, process control.

http://www.perl.com/pub/language/ppt/default.htm
http://../prep.ai.mit.edu/default.htm
http://www.cvshome.com/default.htm
http://www.canb.auug.org.au/~millerp/aegis.html
http://www.rational.com/default.htm
http://www.canb.auug.org.au/~millerp/aegis.html

[URL 37] MK S SourceIntegrity

www.mks.com

Verson control and configuration management. Some versions incorporate festures alowing remote devel opersto
work on the samefiles smultaneoudy (much like CVS).

[URL 38] PVCS Configuration M anagement

www.merant.com

A source code control system, very popular for Windows systems.

[URL 39] Visual SourceSafe

WWW.microsoft.com

A version control system that integrates with Microsoft's visua development tools.

[URL 40] Perforce

www.perforce.com

A client-server software configuration management system.

Other Tools

[URL 41] WinZip—Ar chive Utility for Windows

WWW.Winzip.com

Nico Mak Computing, Inc., Mansfield, CT

http://www.mks.com/default.htm
http://www.merant.com/default.htm
http://www.microsoft.com/default.htm
http://www.perforce.com/default.htm
http://www.winzip.com/default.htm

A Windows-based file archive utility. Supports both zip and tar formats.

[URL 42] The Z Shell

aungte.auc.dk/zsh

A shell designed for interactive use, dthough it isaso a powerful scripting language. Many of the useful features of
bash, ksh, and tcsh were incorporated into zsh; many origina features were added.

[URL 43] A Free SMB Client for Unix Systems

samba.anu.edu.au/pub/samba/

Samballets you sharefiles and other resources between Unix and Windows systems. Sambaincludes:

An SMB server, to provide Windows NT and LAN Manager-stylefile and print servicesto SMB clients
such as Windows 95, Warp Server, smbfs, and others.

A Netbios nameserver, which among other things gives browsing support. Samba can be the master browser
onyour LAN if you wish.

An ftp-like SMB client that allows you to access PC resources (disks and printers) from Unix, Netware, and

other operating systems.

Papers and Publications

[URL 44] The comp.object FAQ

www.cyberdyne-object-sys.com/oofag?2

A substantia and well-organized FAQ for the comp.object newsgroup.

http://../sunsite.auc.dk/zsh
http://../samba.anu.edu.au/pub/samba/default.htm
http://www.cyberdyne-object-sys.com/oofaq2

[URL 45] eXtreme Programming

www. X Programming.com

From the Web site: "In XP, we use avery lightweight combination of practicesto create ateam that can rapidly
produce extremely reliable, efficient, well-factored software. Many of the XP practices were created and tested as
part of the Chryder C3 project, which isavery successful payroll system implemented in Smalltalk.”

[URL 46] Alistair Cockburn'sHome Page

members.aol.com/acockburn

Look for "Structuring Use Caseswith Goas' and use case templates.

[URL 47] Martin Fowler's Home Page

ourworld.CompuServe.com/homepages/martin_fowler

Author of Analysis Patterns and co-author of UML Distilled and Refactoring: Improving the Design of Existing
Code. Martin Fowler's home page discusses his books and hiswork with the UML.

[URL 48] Robert C. Martin's Home Page

WWw.objectmentor.com

Good introductory papers on object-oriented techniques, including dependency andysis and metrics.

[URL 49] Aspect-Oriented Programming

WWW. pare.xerox.com/cd/projects/aop/

An gpproach to adding functionadity to code, both orthogonally and declaratively.

[URL 50] JavaSpaces Specification

http://www.xprogramming.com/default.htm
http://../members.aol.com/acockburn
http://../ourworld.compuserve.com/homepages/martin_fowler
http://www.objectmentor.com/default.htm
http://www.pare.xerox.com/csl/projects/aop/default.htm

java.sun.com/products/javaspaces

A Lindalike system for Javathat supports distributed persistence and distributed agorithms.

[URL 51] Netscape Source Code

www.mozillaorg

The development source of the Netscape browser.

[URL 52] The Jargon File

WWW.jargon.org

Eric S Raymond

Definitions for many common (and not so common) computer industry terms, dong with agood dose of folklore.

[URL 53] Eric S. Raymond's Papers

Www.tuxedo.org/~esr

Eric's papers on The Cathedral and the Bazaar and Homesteading the Noo-sphere describing the psychosocietd
basisfor and implications of the Open Source movement.

[URL 54] TheK Desktop Environment

www.kde.org

From their Web page: "KDE isa powerful graphical desktop environment for Unix workstations. KDE isan Internet
project and truly openin every sense.”

[URL 55] The GNU Image M anipulation Program

http://../java.sun.com/products/javaspaces
http://www.mozilla.org/default.htm
http://www.jargon.org/default.htm
http://www.tuxedo.org/~esr
http://www.kde.org/default.htm

WWW.gImp.org

Gimpisafredy distributed program used for image creation, composition, and retouching.

[URL 56] The Demeter Project

WWW.ccs.neu.edu/research/demeter

Research focused on making software easer to maintain and evolve using Adaptive Programming.

Miscellaneous

[URL 57] The GNU Project

WwWw.gnu.org

Free Software Foundation, Boston, MA

The Free Software Foundation is a tax-exempt charity that raises funds for the GNU project. The GNU project's
god isto produce acomplete, free, Unix-like system. Many of the tools they've devel oped a ong the way have
become industry standards.

[URL 58] Web Server Information

www.hetcraft.com/survey/servers.html

Linksto the home pages of over 50 different web servers. Some are commercia products, while others are freely
avalable

| | @ve RuBoard

http://www.gimp.org/default.htm
http://www.ccs.neu.edu/research/demeter
http://www.gnu.org/default.htm
http://www.netcraft.com/survey/servers.html

| | @ve RuBoard

Bibliography

[Bak72] F. T. Baker. Chief programmer team management of production programming. |BM Systems Journal, 11(1):56-73, 1972.

[Bbm96] V. Basili, L. Briand, and W. L. Melo. A validation of object-oriented design metrics as quality indicators. | EEE Transactions
on Software Engineering, 22(10):751—-761, October 1996.

[Ber96] Albert J. Bernstein. Dinosaur Brains: Dealing with All Those Impossible People at Work. Ballantine Books, New York, NY,
199%6.
[Bragds] Marshal Brain. Win32 System Services. Prentice Hall, Englewood Cliffs, NJ, 1995.

[Bro95] Frederick P. Brooks Jr. The Mythical Man Month: Essays on Software Engineering. Addison-Wesley, Reading, MA,
anniversary edition, 1995.

[CGAQ] N. Carriero and D. Gelenter. How to Write Parallel Programs. A First Course. MIT Press, Cambridge, MA, 1990.

[CN91] Brad J. Cox and Andrex J. Novobilski. Object-Oriented Programming, An Evolutionary Approach. Addison-Wesley,
Reading, MA, 1991.

[Coc97a] Alistair Cockburn. Goals and use cases. Journal of Object Oriented Programming, 9(7):35-40, September 1997.

[Coc97h] Alistair Cockburn. Surviving Object-Oriented Projects: A Manager's Guide. Addison Wesley Longman, Reading, MA,
1997.

[Cop92] James O. Coplien. Advanced C++ Programming Styles and Idioms. Addison-Wesley, Reading, MA, 1992.
[DL99] Tom Demarco and Timothy Lister. Peopleware: Productive Projects and Teams. Dorset House, New Y ork, NY, second

edition, 1999..

[FBB+99] Martin Fowler, Kent Beck, John Brant, William Opdyke and Don Roberts. Refactoring: Improving the Design of Existing
Code. Addison Wedley Longman, Reading, MA, 1999.

[Fow96] Martin Fowler. Analysis Patterns: Reusable Object Models. Addison Wesley Longman, Reading, MA, 1996.

[FS97] Martin Fowler and Kendall Scott. UML Distilled: Applying the Standard Object Modeling Language. Addison Wesley
Longman, Reading, MA, 1997.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides. Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wedley, Reading, MA, 1995.

[Gla99a] Robert L. Glass. Inspections—Some surprising findings. Communications of the ACM, 42(4): 17-19, April 1999.

[Gla99b] Robert L. Glass. Theredlities of software technology payoffs. Communications of the ACM, 42(2):74—79, February 1999.
[Hol 78] Michael Holt. Math Puzzes and Games. Dorset Press, New York, NY, 1978.

[Jac94] Ivar Jacobson. Object-Oriented Software Engineering: A Use-Case Driven Approach. Addison-Wesley, Reading, MA, 1994,

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira Lopes, Jean-Marc Loingtier and John
Irwin. Aspect-oriented programming. In European Conference on Object-Oriented Programming (ECOOP), volume LNCS 1241.
Springer-Verlag, June 1997.

[Knu97a] Donad Ervin Knuth. The Art of Computer Programming: Fundamental Algorithms, volume 1. Addison Wesley Longman,
Reading, MA, third edition, 1997.

[Knu97b] Donald Ervin Knuth. The Art of Computer Programming: Seminumerical Algorithms, volume 2. Addison Wesley
Longman, Reading, MA, third edition, 1997.

[Knu98] Donald Ervin Knuth. The Art of Computer Programming: Sorting and Searching, volume 3. Addison Wesley Longman,
Reading, MA, second edition, 1998.

[KP99] Brian W. Kernighan and Rob Pike. The Practice of Programming. Addison Wesley Longman, Reading, MA, 1999.
[Kru9g] Philippe Kruchten. The Rational Unified Process: An Introduction. Addison Wesley Longman, Reading, MA, 1998.
[Lak96] John Lakos. Large-Scale C++ Software Design. Addison Wesley Longman, Reading, MA, 1996.

[LH89] Karl J. Lieberherr and lan Holland. Assuring good style for object-oriented programs. |EEE Software, pages 3848,
September 1989.

[Lis88] Barbara Liskov. Data abstraction and hierarchy. SSGPLAN Notices, 23(5), May 1988.

[LMB92] John R. Levine, Tony Mason and Doug Brown. Lex and Yacc. O'Reilly & Associates, Inc., Sebastopol, CA, second edition,
1992.

[McC95] Jm McCarthy. Dynamics of Software Development. Microsoft Press, Redmond, WA, 1995.

[Mey96] Scott Meyers. More Effective C++: 35 New Ways to Improve Your Programs and Designs. Addison-Wesley, Reading,
MA, 1996.

[Mey97a] Scott Meyers. Effective C++: 50 Specific Ways to Improve Your Programs and Designs. Addison Wesley Longman,
Reading, MA, second edition, 1997.

[Mey97b] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, Englewood Cliffs, NJ, second edition, 1997.

[Pet98] Charles Petzold. Programming Windows, The Definitive Guide to the Win32 API. Microsoft Press, Redmond, WA, fifth
edition, 1998.

[Scho5] Bruce Schneier. Applied Cryptography: Protocols, Algorithms, and Source Codein C. John Wiley & Sons, New York, NY,
second edition, 1995.

[Sed83] Robert Sedgewick. Algorithms. Addison-Wesley, Reading, MA, 1983.

[Sed92] Robert Sedgewick. Algorithmsin C++. Addison-Wedey, Reading, MA, 1992,

[SF96] Robert Sedgewick and Phillipe Flgjolet. An Introduction to the Analysis of Algorithms. Addison-Wedley, Reading, MA, 1996.
[Ste92] W. Richard Stevens. Advanced Programming in the Unix Environment. Addison-Wedey, Reading, MA, 1992.

[Ste98] W. Richard Stevens. Unix Network Programming, Volume 1: Networking APIs: Sockets and Xti. Prentice Hall, Englewood
Cliffs, NJ, second edition, 1998.

[Ste99] W. Richard Stevens. Unix Network Programming, Volume 2: Inter process Communications. Prentice Hall, Englewood
Cliffs, NJ, second edition, 1999.

[Str35] James Ridley Stroop. Studies of interference in seria verbal reactions. Journal of Experimental Psychology, 18:643-662, 1935.

[WK82] James Q. Wilson and George Kelling. The police and neighborhood safety. The Atlantic Monthly, 249(3):29-38, March 1982.

[YC86] Edward Yourdon and Larry L. Constantine. Structured Design: Fundamentals of a Discipline of Computer Program and
Systems Design. Prentice Hall, Englewood Cliffs, NJ, second edition, 1986.

[You95] Edward Y ourdon. Managing projects to produce good-enough software. |EEE Software, March 1995.

| | @ve RuBoard

| | @ve RuBoard

Appendix B. Answersto Exercises

Exercise 1:

Answer 1:

Exercise 2:

from Orthogonality

Y ou arewriting aclass caled Split, which splitsinput
linesinto fields. Which of the following two Javaclass
sgnaturesisthe more orthogona design?

class Splitl {

public Splitl(lnputStreanReader
rdr) { ...

public void readNextLine() throws
| OException { ...

public int nunFields() { ...

public String getField(int fieldNo)
{ ...

}
class Split2 {

public Split2(String line) { ...
public int nunFields() { ...
public String getField(int fieldNo)

To our way of thinking, class Split2ismore
orthogonal. It concentrates on its own task, splitting
lines, and ignores detalls such aswherethelines are
coming from. Not only does this make the code easier
to develop, but it also makesit moreflexible. Split2
can split linesread from afile, generated by another
routing, or passed in viathe environment .

from Orthogondlity

Which will lead to amore orthogona design:
modeless or moda diaog boxes?

Answer 2:

Exercise 3:

Answer 3:

Exercise 4:

If done correctly, probably modeless. A system that
uses modeless dia og boxes will beless concerned
with what isgoing on at any particular momentintime.
[twill likely have abetter intermodule communications
infragtructure than amoda system, which may have
built-in assumptions about the Sate of the
system—assumptionsthat lead to increased coupling
and decreased orthogonality.

from Orthogondlity

How about procedura languages versus object
technology? Which resultsin amore orthogona
sysem?

Thisisalittletricky. Object technology can provide a
more orthogona system, but because it has more
featuresto abusg, it isactualy easier to create a
nonorthogonal system using objectsthanitisusnga
procedurd language. Features such as multiple
inheritance, exceptions, operator overloading, and
parent-method overriding (via subclassing) provide
ample opportunity to increase coupling in nonobvious

ways.

With object technology and alittle extraeffort, you
can achieve amuch more orthogona system. But
while you can dwayswrite "spaghetti code’ ina
procedura language, object-oriented languages used
poorly can add meatbals to your spaghetti.

from Prototypes and Post-it Notes

Marketing would like to St down and brainstorm a
few Web-page designs with you. They are thinking of
clickable image mapsto take you to other pages, and
so on. But they can't decide on amode for the
Image—maybeit'sacar, or aphone, or ahouse. You
have alist of target pages and content; they'd liketo
see afew prototypes. Oh, by the way, you have 15
minutes. What tools might you use?

Answer 4:

Exercise5:

L ow-tech to the rescue! Draw afew cartoons with
markers on awhiteboard—a car, aphone, and a
house. It doesn't haveto be gresat art; stick-figure
outlines arefine. Put Pogt-it notes that describe the
contents of target pages on the clickable areas. Asthe
meeting progresses, you can refine the drawings and
placements of the Pogt-it notes.

from Domain Languages

We want to implement amini-language to control a
smple drawing package (perhaps aturtle-graphics
system). The language conssts of single-letter
commands. Some commands are followed by asingle
number. For example, the following input would draw
arectangle.

P2 # select pen 2

D # pen down

W2 # draw west 2cm
N1 # then north 1

E 2 # then east 2

S 1 # then back south
U # pen up

Implement the code that parsesthislanguage. It
should be designed so that it issmpleto add new
commands.

Answer 5:

Because we want to make the language extendable,
well make the parser table driven. Each entry inthe
table contains the command | etter, aflag to say
whether an argument is required, and the name of the
routine to cdl to handle that particular command.

typedef struct {

char cnd; /* the
conmand letter */
int hasArg; /* does it

take an argunent */
void (*func)(int, int); /* routine
to call */

} Conmand;
static Command cnds[] = {
{ "P, ARG doSel ect Pen 1},
{ "U, NOARG doPenUp },
{ "D, NOARG doPenDown },
{ "N, ARG doPenDir },
{ "E, ARG doPenDir },
{ 'S, ARG doPenDir },
{ "W, ARG doPenDir }

b
Themain program is pretty smple: read aline, look
up the command, get the argument if required, then
cdl the handler function.

while (fgets (buff, sizeof (buff),
stdin)) {
Command *cmd = findConmand(*buff);
if (cnd) {
int arg =0 ;
if (cmd->hasArg &&
lget Arg(buff+l, &arg)) {
fprintf(stderr, "'%' needs an
argunent\n", *puff);
conti nue;
}
cmd- >func(*buff, arg);
}
}
The function that looks up acommand performsa

linear search of thetable, returning ether the matching
entry or NULL.

Conmand *findComand(int cnd) {
int i;
for (i = 0; i < ARRAY_SI ZE(cnds);
i ++) {
if (cnds[i].cnd == cnd)
return cnds + i;
}

fprintf (stderr, "Unknown conmand
"%'\n", cmd);

Exercise 6:

Answer 6:

Exercise 7:

from Domain Languages

Design aBNF grammear to parse atime specification.
All of thefollowing examples should be accepted.

4pm 7:38pm 23:42, 3:16, 3:16am

Using BNF, atime specification could be

<tinme>

<anpnv
<hour >

<m nute> ::

<digit>

<hour > <anpnp|
<hour > : <mi nute> <onpn® |
<hour > : <mi nute>

am| pm
<digit> |
<digit> <digit>
<digit> <digit>

0] 1| 2|3|4|5]6]7|8]9

from Domain Languages

Implement a parser for the BNF grammar in Exercise
6 using yacc, bison, or asimilar parser-generator.

Answer 7:

We coded our example using bison, the GNU version
of yacc. For dlarity, we'rejust showing the body of
the parser here. Look at the source on our Web site
for thefull implementation .

time: spec ECF
{ if ($1 >= 24*60) yyerror("
Time is too large")
printf("%l mnutes past
m dni ght\n", $1);

exit(0);
}
spec: hour ':' mnute
{ $% = $1 + $3;
}
| hour ':' minute anmpm

{ if ($1 > 11*60) yyerror("
Hour out of range");
$$ = $1 + $3 + $4;
}
| hour anmpm
{ if ($1 > 11*60) yyerror("
Hour out of range");
$$ = $1 + $2;
}

hour : hour _num
{ if ($1 > 23) yyerror (" Hour
out of range");
$$ = $1 * 60;
b

nm nut e: DATDAT
{ $$ = $1*10 + $2;
if ($$ > 59) yyerror("
m nute out of range");

}1
anpm AM { $$ =
AM M NS; }
| PM { $$ =
PM_ MNS; }
hour_num DIAT { $% =
$1; }
| DA@TDAT { $$ =

$1*10 + $2; }

’

Exercise 8:

Answe 8:

Exercise 9:

from Domain Languages

Implement the time parser using Perl. [Hint: Regular
expressions make good parsers.]

$ = shift;

/~(\d\d?) (an] pm) $/ && doTi ne
($1, 0, $2, 12);

IA(\VdVd?): (\d\d) (ar pm) $/ &&
doTi me($l, $2, $3, 12);

[A(\Nd\Vd?): (\d\d)$/ &&
doTine($l, $2, 0, 24);

die "Invalid time $ \n";

#
doTi me(hour, min, anpm naxHour)
#
sub doTi me($$$3$) {
ny ($hour, $nin, $offset, $maxHour)
= @;
die "Invalid hour: S$hour" if ($hour
>= $maxHour) ;
$hour += 12 if ($offset eq "pnl');
print $hour*60 + $nin, " mnutes
past m dni ght\n";
exit (0);
}

from Esimeting

Y ou are asked "Which has ahigher bandwidth: a IMbps
communicationsline or a person walking between two
computerswith afull 4GB tapein their pocket?' What
congtraintswill you put on your answer to ensure that the
scope of your response is correct? (For example, you might
say that the time taken to access the tape isignored.)

Answer 9:

Exercise 10:

Answer 10:

Our answer must be couched in several assumptions:

The tape contains the information we need to be
transferred.

We know the speed at which the person walks.

We know the distance between the machines.

We are not accounting for thetimeit takesto
transfer information to and from the tape.

The overhead of storing data on atapeisroughly
equal to the overhead of sending it over a
communicationsline.

from Esimeting

So, which hasthe higher bandwidth?

Subject to the caveatsin Answer 9: A 4GB tape contains
32 x 109 bits, so a IMbpsline would have to pump data
for about 32,000 seconds, or roughly 9 hours, to transfer
the equivaent amount of information. If the personis
walking at acongtant 3%2 mph, then our two machines
would need to be at least 31 miles apart for the
communications line to outperform our courier. Otherwise,
the person wins.

Exercise 11:
from Text Manipulation

Y our C program uses an enumerated type to
represent one of 100 states. You'd liketo be able to
print out the state as a string (as opposed to a
number) for debugging purposes. Write a script that
reads from standard input afile containing

nane
state_a
state_b

Produce thefile name.h, which contains

extern const char* NAME nanes[];
typedef enum {

state_a,

state_b,

} NAiVE;

and thefile name.c, which contains

const char* NAME nanes[] = {
"state_a",
"state_b",

Answer 11:

We implemented our answer using Perl.

ny @onsts;
ny $nane = <>;
die "lnvalid format - missing nane"
unl ess defined($name);
chonp Share;
Read in the rest of the file
while (<>) {
chonp;
s/™\s*/]; s/\s*$//;
die "lInvalid line: $ " unless
IM(\w) $/

push @onsts, $;
}

Now generate the file

open(HDR, ">$nane.h") or die "Can't
open $nane. h: $1":

open(SRC, ">$name.c") or die "Can't
open $nane. c: $! "

ny $uc_name = uc(S$nane);
ny $array_nane = $uc_nane . "_names";

print HDR "/* file generated
automatically - do not edit */\n";

print HDR "extern const char *$ {
uc_nane} _nanme[];";

print HDR "typedef enum {\n ";

print HDR join ",\n ", @onsts;

print HDR "\n} $uc_name;\n\n";

print SRC "/* File generated
automatically - do not edit */\n";

print SRC "const char *$ {uc_nane}
_narme[] = {\n \"";

print SRCjoin "\",\n\"", @onsts;

print SRC "\"\n};\n" ;

cl ose(SRO);
cl ose(HDR) ;

Using the DRY principle, wewon't cut and paste this
new fileinto our code. Instead, well #include it—the
flat fileisthe master source of these congtants. This
meansthat well need amakefile to regenerate the
header when thefile changes. Thefollowing extract is
from the test bed in our source tree (available on the
Web site).

etest.c etest.h: etest.inc
enurrer at ed. pl
perl enunerat ed. pl
etest.inc

Exercise 12

Answer 12:

from Text Manipulation

Hafway through writing this book, we redlized that
we hadn't put the use gtrict directive into many of our
Perl examples. Write a script that goes through the .pl
filesin adirectory and adds ause strict at the end of
theinitia comment block to dl filesthat don't aready
have one. Remember to keep abackup of al filesyou

change.

Here's our answer, written in Perl.

ny $dir = shift or die "Mssing
directory";
for ny $file (glob("$dir/*.pl")) {
open(IP, "$file") or die "Opening
$file: $1 ";
undef $/; # Turn off
i nput record separator --
ny $content = <I P> # read whole
file as one string.
cl ose(IP);
if ($content !~ /~use strict/m {
renane $file, "$file.bak" or die
"Renaming $file: $1";
open(COP, ">$file") or die "Creating
$file: $1 ";
Put 'use strict' on first line
t hat
doesn't start '#
$content =~ s/~(?!'#)/\nuse
strict;\n\n/m
print OP $content;

cl ose(OP);

print "Updated $file\n";
}
el se {

print "$file already strict\n";

}

Exercise 13:
from Code Generators

Write a code generator that takesthe input filein
Figure 3.4, and generates output in two |languages of
your choice. Try to makeit easy to add new
languages.

Answer 13:
We use Perl to implement our solution. It dynamicaly
|oads amodule to generate the requested language, O
adding new languagesis easy. The main routine loads
the back end (based on a command-line parameter),
then readsitsinput and calls code generation routines
based on the content of each line. Were not
particularly fussy about error handling—well get to
know pretty quickly if things go wrong.

ny $lang = shift or die "Mssing
| anguage”;
$lang .= "_cg. pni;
require "$lang” or die "Couldn't |oad
$l ang";
Read and parse the file
ny $nane;
while (<>) {
chonp;
if (/™Ms*S/) {
CG : bl ankLine(); }
elsif (/™MN#(.*)]) { CG:
coment ($1); }
elsif (/"Ms*(.+)/) {
CG :startMsg($l); $nane = $1; }
elsif c/~H) {
CG : endMsg($nane); }
elsif (/"R s*(\w+)$/)

CG :sinpl eType($l, $2); }
elsif (/"F\s*(\wh)\s
+(\wh)\[(\d+)\]9$/)

{

CG :arrayType($l, $2,$3); }

el se {

die "Invalid line: $_"
}
}

Writing alanguage back end issmple: provide a
module that implements the required Six entry points.
Here'sthe C generator:

#!/usr/bin/perl -w
package CG
use strict;
Code generator for 'C (see
cg_base. pl)
sub bl ankLine() { print "\n"; }
sub comment () { print "/*$_[0]
*\n"; }
sub startMsg() { print "typedef
struct {\n"; }
sub endMsg() { print "}
$_[0];\n\n"; }
sub arrayType() {
ny ($nane, $type, $size) = @;
print " $type $nane\[$size];\n";

b}

Exercise 14:

Answer 14:

from Design by Contract

What makes a good contract? Anyone can add
preconditions and postconditions, but will they do you
any good? Worse yet, will they actualy do more harm
than good? For the example below and for thosein
Exercises 15 and 16, decide whether the specified
contract isgood, bad, or ugly, and explain why.

Fird, let'slook at an Eiffd example. Herewe have a
routine for adding a STRING to adoubly linked,
circular list (remember that preconditionsare labeled
with require, and postconditions with ensure).

-- Add an itemto a doubly Iinked
list,

-- and return the newWy created NODE

add item(item: STRING : NODE is

require
item/= Void
-- /= is "not equal"'.

find item{(item = Void
-- Must be unique
deferred --
Abstract base cl ass.
ensure
resul t. next. previous
-- Cheek the newy
result. previous. next = result
-- added node's I|inks.
find_item(item = result
-- Should find it.
end

result

ThisEiffd exampleis good. We require non-null data
to be passed in, and we guarantee that the semantics
of acircular, doubly linked list are honored. It dso
helpsto be ableto find the string we stored. Because
thisisadeferred class, the actual classthat
implementsit isfree to use whatever underlying
mechanism it wantsto. It may choose to use pointers,
or an array, or whatever; aslong asit honorsthe
contract, we don't care .

Exercise 15:

Answer 15:

Exercise 16:

from Design by Contract

Next, let'stry an example in Java—somewhat smilar
to the examplein Exercise 14. insertNumber inserts
an integer into an ordered list. Pre- and postconditions
arelabeled asiniContract (see [URL 17]).

private int data[];

/**
* @ost data[index-1] < datalindex]
&&
* dat a[i ndex] == aVal ue

*/
public Node insertNunmber (final int
aVal ue)

{
int index =
fi ndPl aceTol nsert (aVal ue);

Thisis bad. The math in theindex clause (index-1)
won't work on boundary conditions such asthefirst

entry .

The postcondition assumes a particular
implementation: we want contracts to be more
abstract than that.

from Design by Contract

Heresafragment from astack classin Java. Isthisa
good contract?

/**
* @re anltem!= null /1 Require
real data
* @ost pop() == anltem// Verify
that it's
* /1 on the
st ack
*/
public void push(final String anlten)

Answer 16:

Exercise 17:

It'sagood contract, but a bad implementation. Here,
theinfamous"Heisenbug' [URL 52] rearsits ugly
head. The programmer probably just madeasmple
typo—pop instead of top. Whilethisisasmpleand
contrived example, Sde effectsin assertions (or in any
unexpected place in the code) can be very difficult to
diagnose.

from Design by Contract

The classic examples of DEC (asin Exercises 14-16)
show an implementation of an ADT (Abgtract Data
Type)—typicaly astack or queue. But not many
people redly write these kinds of low-level classes.

So, for thisexercise, design an interface to akitchen
blender. It will eventudly be a\Web-based,
Internet-enabled, CORBA-fled blender, but for now
we just need the interface to contral it. It hasten
speed settings (0 means off). Y ou can't operateit
empty, and you can change the speed only one unit at
atime (that is, from 0to 1, and from 1 to 2, not from
0to 2).

Here are the methods. Add appropriate pre- and
postconditions and an invariant.

i nt get Speed()

voi d set Speed(int x)
bool ean i sFull ()
void fill()

void enpty()

Answer 17:
Well show the function signaturesin Java, with the
pre- and postconditions labeled asin iContract.

Firg, theinvariant for the class;

/**
* @nvariant getSpeed() > 0
* implies isFull()

/1 Don't run enpty
* @nvariant get Speed() >= 0 &&

* get Speed() < 10
/1 Range check
*/

Next, the pre- and postconditions:

/**
* @re Math.abs(get Speed() - x) <=
1// Only change by one
* @re x >= 0 && x < 10
/1 Range check
* @ost get Speed() == X
/1 Honor requested speed

*/
public void setSpeed(final int x)
/**
* @re lisFull ()
// Don't fill it twce

* @ost isFull ()
/!l Ensure it was done

*/
void fill()
/**
* @re isFull ()

/1 Don't enpty it twce
* @ost tisFull ()
/!l Ensure it was done

*/
voi d enpty()
Exercise 18:
from Design by Contract
How many numbersarein the series 0,5,10,15,...,
100?
Answer 18:

Thereare 21 termsin the series. If you said 20, you
just experienced afencepost error.

Exercise 19:

from Assartive Programming

A quick redlity check. Which of these"impossible” things
can happen?

1.

A month with fewer than 28 days

sat("." ,&sh) ==-1 (that is, can't accessthe current
directory)

In C++: a=2;b=3; if (atb!=5) exit(l);

A trianglewith aninterior angle sum ? 180°

A minute that doesn't have 60 seconds

InJava (a+1)<=a

Answer 19:

September, 1752 had only 19 days. Thiswas done
to synchronize calendars as part of the Gregorian
Reformation.

The directory could have been removed by another
process, you might not have permisson to read it,
&b might beinvaid—you get the picture.

We sneskily didn't specify the types of aand b.
Operator overloading might have defined +, =, or !
= to have unexpected behavior. Also, aand b may
be aiases for the same variable, so the second
assgnment will overwrite the value sored in thefirdt.

In non-Euclidean geometry, the sum of the angles of
atrianglewill not add up to 180°. Think of atriangle
mapped on the surface of a sphere.

L eap minutes may have 61 or 62 seconds.

Overflow may leavetheresult of a+ 1 negative (this
can also happenin C and C++).

Exercise 20:
from Assartive Programming

Develop asmple assertion checking classfor Java

Answer 20:

We choseto implement avery smple classwithasingle
dtatic method, TEST, that prints a message and a stack
trace if the passed condition parameter isfdse .

package com pragprog. util

i nport java.lang. System /1 for
exit()

i nport java.lang. Thread; /1 for
dunpSt ack ()

public class Assert {
/** Wite a nmessage, print a stack
trace and exit if
* our paranmeter is false.
*/
public static void TEST(bool ean
condi tion) {
if ('condition) {
System out. println("==== Assertion
Fai l ed ====");
Thr ead. dunpSt ack() ;
Systemexit(l);
}
}

/1 Testbed. If our argunment is 'okay',
try an assertion that

/1 succeeds, if 'fail' try one that
fails

public static final void main(String
args[]) {

if (args[0].conpareTo("okay") == 0) {
TEST(1 == 1);
}
else if (args[O].conpareTo("fail") ==

0) {
}

el se {
t hrow new Runti meExcepti onC "Bad
argunent ");

}
}
}

TEST(1 == 2);

Exercise 21:

Answer 21:

from When to Use Exceptions

While designing anew container class, you identify the
following possible error conditions:

1.

No memory availablefor anew dement inthe add
routine

Requested entry not found in the fetch routine

null pointer passed to the add routine

How should each be handled? Should an error be
generated, should an exception be raised, or should the
condition beignored?

Running out of memory isan exceptiona condition, sowe
fed that case (1) should raise an exception.

Failureto find an entry is probably quiteanorma
occurrence. The application that calls our collection class
may well write code that checksto seeif an entry is present
before adding a potentia duplicate. Wefed that case (2)
should just return an error.

Case (3) ismore problematic—if the value null issgnificant
to the gpplication, then it may be justifiably added to the
container. If, however, it makes no sense to store nulll
values, an exception should probably be thrown.

Exercise 22:

from How to Balance Resources

Some C and C++ developers make a point of setting
apointer to NULL after they dedllocate the memory it
references. Why isthisagood idea?

Answer 22:

Exercise 23:

Answer 23:

Exercise 24:

In most C and C++ implementations, thereis no way
of checking that a pointer actudly pointsto vaid
memory. A common mistakeisto dedllocate ablock
of memory and reference that memory later inthe
program. By then, the memory pointed to may well
have been reall ocated to some other purpose. By
setting the pointer to NULL, the programmers hope
to prevent these rogue references—in most cases,
dereferencing aNULL pointer will generate aruntime
eror .

from How to Balance Resources

Some Java developers make apoint of setting an
object variableto NULL &fter they havefinished using
the object. Why isthisagood idea?

By setting the reference to NULL, you reduce the
number of pointersto the referenced object by one.
Once this count reaches zero, the object iseligiblefor
garbage collection. Setting the referencesto NULL
can be sgnificant for long-running programs, where
the programmers need to ensure that memory
utilization doesn't increase over time .

from Decoupling and the Law of Demeter

We discussed the concept of physical decoupling in the
box . Which of thefollowing C++ header filesismore
tightly coupled to the rest of the system?

personl.h: person2.h:

#i ncl ude cl ass Date;

"date. h" class Person2 {

cl ass Personl { private:

private: Date *nyBirthdate;
Dat e nyBirthdate; publi c:

publi c: Per son2(Dat e
Per sonl(Date &birt hbDat e) ;

&birthbDat e) ; /...
/...

Answer 24:

Exercise 25:

Answer 25:

A header fileis supposed to define the interface between
the corresponding implementation and the rest of the
world. The heeder fileitself has no need to know about
theinternds of the Date class—it merdly needsto tell the
compiler that the congtructor tekesaDate asa
parameter. S0, unlessthe header file uses Datesininline
functions, the second snippet will work fine .

What's wrong with the first snippet? On asmall project,
nothing, except that you are unnecessarily making
everything that uses a Personl classaso includethe
header filefor Date. Once thiskind of usage gets
common in aproject, you soon find that including one
header file ends up including most of therest of the
sysem—aserious drag on compilation times.

from Decoupling and the Law of Demeter

For the example below and for those in Exercises 26
and 27, determine if the method calls shown are dlowed
according to the Law of Demeter. Thisfirst oneisin
Java.

public void showBal ance(BankAccount
acct) {
Money anmt = acct. getBal ance() ;
printToScreen(amt .printFormat()) ;

}

The variable acct is passed in as a parameter, so the
getBaance cdl isdlowed. Cdling amt.printFormat(),
however, isnot. Wedon't "own™" amt and it wasn't
passed to us. We could diminate showBa ance's
coupling to Money with something likethis:

voi d showBal ance(BankAccount b) {
b. pri nt Bal ance();

}

Exercise 26:

Answer 26:

Exercise 27:

from Decoupling and the Law of Demeter

Thisexampleisdsoin Java

public class Col ada {
private Bl ender nyBl ender;
private Vector nyStuff;
public Col ada() {
myBl ender = new Bl ender () ;
myStuff = new Vector() ;

}
private void doSonething() {

myBl ender . addl ngredi ent s(nmyStuff. el enents()
)
}

}

Since Colada creates and owns both myBlender and
myStuff, the cdllsto addingredients and elementsare
dlowed .

from Decoupling and the Law of Demeter

Thisexampleisin C++.

voi d processTransacti on(BankAccount
acct, int) {
Per son *who;
Money ant;

ant . set Val ue(123. 45);

acct . set Bal ance(ant);

who = acct . get Owner()

mar kWor kf | ow(who- >nane(),
SET_BALANCE) ;

}

Answer 27.
In this case, processT ransaction owns amt—it is created

on the stack, acct is passed in, so both setVaue and
setBalance are dlowed. But processT ransaction does
not own who, so the call who->name() isin violation.
The Law of Demeter suggests replacing thisline with

mar kWor kf | ow(acct . nane(), SET_BALANCE);
The codein processTransaction should not have to
know which subobject within a BankAccount holdsthe
name—this structura knowledge should not show
through BankAccount's contract. Instead, we ask the
BankA ccount for the name on the account. It knows
where it kegps the name (maybein aPerson, ina
Business, or in apolymorphic Customer object).

Exercise 28:
from Metgprogramming

Which of the following things would be better represented
as code within a program, and which externaly as metadata?

1.

Communication port assgnments

An editor's support for highlighting the syntax of
various languages

An editor's support for different graphic devices

A state machinefor aparser or scanner

Sample vaues and resultsfor usein unit testing

Answer 28:
There are no definitive answers here—the questions were
intended primarily to give you food for thought. However,
thisiswhat wethink:
1.

Communication port assgnments. Clearly, this
information should be stored as metadata. But to
what leve of detail’? Some Windows
communications programs let you select only baud
rate and port (say COM1 to COM4). But perhaps
you need to specify word size, parity, stop bits, and
the duplex setting aswell. Try to dlow thefinest
leve of detail where practical.

An editor'ssupport for highlighting the syntax
of variouslanguages. Thisshould be
implemented as metadata. Y ou wouldn't want to
have to hack code just because the latest version of
Javaintroduced a new keyword.

An editor'ssupport for different graphic
devices. Thiswould probably bedifficult to
implement gtrictly as metadata. Y ou would not want
to burden your application with multiple device
driversonly to select one at runtime. Y ou could,
however, use metadata to specify the name of the
driver and dynamically load the code. Thisis
another good argument for keeping the metadatain
ahuman-readable format; if you use the program to
set up adysfunctiona video driver, you may not be
able to use the program to set it back.

A state machinefor aparser or scanner. This
depends on what you are parsing or scanning. If you
are parsing some datathat isrigidly defined by a
standards body and is unlikely to change without an
act of Congress, then hard coding itisfine. But if
you arefaced with amore volatile Stuation, it may
be beneficid to define the Sate tables externdly.

Samplevalues and resultsfor usein unit
testing. Most gpplications define these values
inlinein the testing harness, but you can get better
flexibility by moving the test data—and the definition
of the acceptable results—out of the codeitself.

Exer cise 29:

from It'sJust aView

Suppose you have an airline reservation system that
includes the concept of aflight:

public interface Flight {
/'l .Return false if flight full
publ i c bool ean
addPassenger (Passenger p);
public void addToWii tLi st (Passenger

p);
public int getFlightCapacity();
public int getNunPassengers();
}

If you add a passenger to the wait lit, they'll be put
on the flight automatically when an opening becomes
avalable

There's amassive reporting job that goes through
looking for overbooked or full flightsto suggest when
additiona flights might be scheduled. It worksfine, but
it takes hoursto run.

Wed liketo have alittle moreflexibility in processing
wait-list passengers, and we've got to do something
about that big report—it takes too long to run. Use
theideas from this section to redesign thisinterface.

Answer 29:

Well take Hight and add some additiona methods for
maintaining two ligs of lisgeners. onefor wait-list
natification, and the other for full-flight notification .

public interface Passenger {
public void waitListAvailable();

}
public interface Flight {
public void
addWai t Li st Li st ener (Passenger p);
public void
renoveWi t Li st Li st ener (Passenger p);
public void
addFul I Li stener (Ful | Li stener b);
public void
renmoveFul | Li st ener (Ful | Li stener b);

}...

public interface Bi gReport extends
Ful | Li st ener {
public void FlightFull Alert(Flight
f);
}
If wetry to add a Passenger and fail because the

flight isfull, we can, optionally, put the Passenger on
thewait list. When a spot opens up,
waitLig-Availablewill be cadled. Thismethod can
then choose to add the Passenger automatically, or
have a service representative cal the customer to ask
if they are dtill interested, or whatever. We now have
the flexibility to perform different behaviorsona
per-customer basis.

Next, we want to avoid having the BigReport troll
through tons of recordslooking for full flights. By
having BigReport registered as alistener on Hights,
eech individua Hight can report when it isfull—or
nearly full, if wewant. Now users can get live,
up-to-the-minute reports from BigReport instantly,
without waiting hoursfor it to run asit did previoudy.

Exercise 30:

from Blackboards

For each of thefollowing applications, would a blackboard
system be appropriate or not? Why?

1.

Image processing. Youd liketo have anumber
of paralel processes grab chunks of animage,
process them, and put the completed chunk back.

Group calendaring. Y ou've got people scattered
acrossthe globe, in different time zones, and
gpesking different |languages, trying to schedulea
mesting.

Network monitoringtool. The system gathers
performance statistics and collects trouble reports.
Y ou'd like to implement some agentsto use this
information to look for trouble in the system.

Answer 30:

Image processing. For smple scheduling of a
workload among the parale processes, a shared
work queue may be more than adequate. Y ou might
want to consder ablackboard system if thereis
feedback involved—that is, if the results of one
processed chunk affect other chunks, asin machine
vision gpplications, or complex 3D image-warp
transforms.

Group calendaring. Thismight beagood fit. You
can post scheduled mesetings and availability to the
blackboard. Y ou have entities functioning
autonomoudy, feedback from decisonsis
important, and participants may come and go.

Y ou might want to consider partitioning thiskind of
blackboard system depending on who is searching:
junior staff may care about only the immediate
office, human resources may want only
English-spesking offices worldwide, and the CEO
may want the whole enchilada. Thereisaso some
flexibility on dataformats. we are freeto ignore
formats or languages we don't understand. We have
to understand different formats only for those offices
that have meetings with each other, and we do not
need to expose dl participantsto afull trangtive
closure of dl possible formats. This reduces
coupling to whereit is necessary, and does not
condrain usatificidly.

Networ k monitoringtool. Thisisvery Smilar to
the mortgage/l oan application program described.

Y ou've got trouble reports sent in by usersand
datistics reported automaticaly, al posting to the
blackboard. A human or software agent can analyze
the blackboard to diagnose network failures: two
errorson aline might just be cosmic rays, but
20,000 errors and you've got a hardware problem.
Just as the detectives solve the murder mystery, you
can have multiple entities analyzing and contributing
ideas to solve the network problems.

Exercise 31:

Answer 31:

Exercise 32:

from Programming by Coincidence

Can you identify some coincidencesin thefollowing C
code fragment? Assume that this codeis buried deep
inalibrary routine.

fprintf (stderr, "Error, continue?");
get s(buf);

There are severa potentia problemswith this code.
Fird, it assumes atty environment. That may befineif
the assumption istrue, but what if thiscodeiscaled
from aGUI environment where neither stderr nor

sdinisopen ?

Second, thereis the problemeatic gets, which will write
asmany characters asit receivesinto the buffer
passed in. Malicious users have used thisfailing to
create buffer overrun security holesin many different
systems. Never use gety().

Third, the code assumes the user understands English.

Findly, no oneinther right mind would ever bury user
interaction such asthisin alibrary routine.

from Programming by Coincidence

This piece of C code might work some of thetime, on
some machines. Then again, it might not. What's

wrong?

/* Truncate string to its last maxlen
chars */
void string_tail (char *string, int
maxl en) {
int len = strlen(string);
if (len > maxlen) {
strcpy(string, string + (len -
maxl en));
}
}

Answer 32:

Exercise 33:

Answer 33:

Exercise 34:

POSIX strcpy isn't guaranteed to work for
overlgpping strings. It might happen to work on some
architectures, but only by coincidence .

from Programming by Coincidence

This code comes from a genera -purpose Javatracing
suite. Thefunction writesadring to alogfile. It
passes its unit test, but failswhen one of the Web
developers usesit. What coincidence doesit rely on?

public static void debug(String s)
throws | CException {
FileWiter fw= new FileWiter(
"debug.log", true);
fwwite(s);
fw flush() ;
fw close() ;

}

It won't work in an gpplet context with security
restrictions againg writing to the local disk. Again,
when you have a choice of running in GUI contexts or
not, you may want to check dynamically to seewhat
the current environment islike. In this case, you may
want to put alog file somewhere other than theloca
diskif itisn't accessible.

from Algorithm Speed

We have coded aset of smple sort routines, which
can be downloaded from our Web site (
http:/Aww.pragmati cprogrammer.com). Run them on
various machines available to you. Do your figures
follow the expected curves? What can you deduce
about the relative speeds of your machines? What are
the effects of various compiler optimization settings?1s
the radix sort indeed linear?

http://www.pragmaticprogrammer.com/default.htm
http://www.pragmaticprogrammer.com

Answer 34:

Exercise 35:

Clearly, we can't give any absolute answersto this
exercise. However, we can give you a couple of

pointers.

If you find that your results don't follow a smooth
curve, you might want to check to seeif some other
activity isusing some of your processor's power. Y ou
probably won't get good figures on amultiuser
systemn, and even if you are the only user you may find
that background processes periodically take cycles
away from your programs. Y ou might also want to
check memory: if the gpplication starts using swap
space, performance will nosedive.

Itisinteresting to experiment with different compilers
and different optimization settings. We found some
that pretty startling speed-ups were possible by
enabling aggressive optimization. We dso found that
on thewider RISC architectures the manufacturer's
compilers often outperformed the more portable
GCC. Presumably, the manufacturer isprivy to the
secrets of efficient code generation on these machines.

from Algorithm Speed

The routine bel ow prints out the contents of abinary
tree. Assuming the treeis balanced, roughly how
much stack space will the routine use while printing a
tree of 1,000,000 dements? (Assume that subroutine
cdlsimpose no sgnificant stack overhead.)

void printTree(const Node *node) {
char buffer[1000];
if (node) {
printTree(node->left);
get NodeAsStri ng(node, buffer);
put s(buffer);

print Tree(node->right);
}
}

Answer 35:

Exer cise 36:

The printTree routine uses about 1,000 bytes of stack
gpace for the buffer varidble. It callsitsalf recursvely
to descend through the tree, and each nested call adds
another 1,000 bytesto the stack. It dso calsitsdlf
when it getsto the leaf nodes, but exitsimmediately
when it discoversthat the pointer passed inisNULL.
If the depth of thetreeis D, the maximum stack
requirement isthereforeroughly 1000x (D + 1) .

A baanced binary tree holds twice as many ements
at each level. A tree of depth D holds 1 + 2+4+8 +

... +2D-1), or 2D-1, dements. Our million-eement
tree will therefore need | 1g(1,000,001) |, or 20 levels.

Weéd therefore expect our routine to use roughly
21,000 bytes of stack.

from Algorithm Speed

Can you see any way to reduce the stack
requirements of the routine in Exercise 35 (gpart from
reducing the size of the buffer)?

Answer 36:

Exercise 37:

A couple of optimizations cometo mind. Firg, the
printTreeroutine calsitself on leaf nodes, only to exit
because there are no children. That cal increasesthe
maximum stack depth by about 1,000 bytes. We can
aso diminatethetail recurson (the second recursive
cal), dthough thiswon't affect the worst-case stack

usage .

whil e (node) {
if (node->left)
printTree(node->left);
get NodeAsSt ri ng(node, buffer);
put s(buffer);
node = node->ri ght;
}
The biggest gain, however, comesfrom dlocating just

asngle buffer, shared by dl invocations of printTree.
Pass this buffer as aparameter to the recursive cdlls,
and only 1,000 bytes will be dlocated, regardless of
the depth of recursion.

void printTreePrivate(const Node
*node, char *buffer) {
if (node) {
print TreePrivat e(node->| eft,
buffer);
get NodeAsSt ri ng(node, buffer);
put s(buffer);

print TreePrivat e(node->ri ght,
buffer);
}
}

voi d newPrint Tree(const Node *node) {
char buffer[1000];
printTreePrivate(node, buffer);

}

from Algorithm Speed

On page 180, we claimed that abinary chop is O(Ig(n
)). Canyou provethis?

Answer 37
There are acouple of ways of getting there. Oneisto
turn the problem on its head. If the array hasjust one
element, we don't iterate around the loop. Each
additional iteration doublesthe size of the array we
can search. The generd formulafor thearray szeis
therefore n = 2m, where misthe number of iterations.
If you take logs to the base 2 of each side, you get Ig(n
) =lg(2m), which by the definition of logs becomesIg(

n=m

Exercise 38:
from Refactoring

The following code has obvioudy been updated
severa times over the years, but the changes haven't
improved its structure. Refactor it.

if (state == TEXAS) {
rate = TX_RATE;
am = base * TX RATE;
calc = 2*basis(ant) +
extra(ant)*1. 05;

else if ((state == OHIO || (state ==
MAINE)) {
rate = (state == CH O ? OH _RATE :
MN_RATE;

ant = base * rate;

calc = 2*basis(ant) +
extra(ant)*1. 05;

if (state == CHI O

points = 2;
}
el se {
rate = 1;

am = base;
calc = 2*basis(ant) +
extra(ant)*1. 05;
}

Answer 38:

We might suggest afairly mild restructuring heres
make sure that every test is performed just once, and
make dl the cadculations common. If the expresson
2*basig(. . .) * 1.05 appearsin other placesin the
program, we should probably makeit afunction. We
haven't bothered here .

Weve added arate |ookup array, initidized so that
entries other than Texas, Ohio, and Maine have a
vaue of 1. This approach makesit easy to add values
for other statesin the future. Depending on the
expected usage pattern, we might want to make the
pointsfield an array lookup aswell.

rate = rate_|l ookup[state];
ant = base * rate;
calc = 2*basis(ant) + extra(ant)*1.05;
if (state == CH O
points = 2;

Exercise 39:
from Refactoring

The following Java class needs to support afew more
shapes. Refactor the classto prepareit for the
additions.

public class Shape {
public static final int SQUARE
public static final int ClRCLE
public static final int
Rl GHT_TRI ANGLE = 3;

private int shapeType;
private doubl e size;

public Shape(int shapeType, double
size) {
t hi s. shapeType = shapeType;
this.size = size;

}

// ... other nethods ...

public double area() {
switch (shapeType) {
case SQUARE: return size*size;
case ClRCLE: return
Mat h. Pl *si ze*si ze/ 4. 0O;
case RIGHT_TRI ANGLE: return
si ze*si zel 2. 0;

}

return O;
}

}

Answer 39:
When you see someone using enumerated types (or
their equivaent in Java) to digtinguish between variants
of atype, you can often improve the code by

subclassing:

public class Shape {
private doubl e size;
publi ¢ Shape(doubl e size) {
this.size = size;

public double getSize() { return
size; }

public class Square extends Shape {

public Square(double size) {
super (si ze);

}

public double area() {
doubl e size = getSize() ;
return size*size

}

public class Crcle extends Shape {
public G rcle(double size) {
super (si ze);

public double area() {
doubl e size = getSize();
return Math. Pl *size*size/4.0;

}

}
/|l etc. ..

Exer cise 40:
from Refactoring

This Javacodeis part of aframework that will be
used throughout your project. Refactor it to be more
generd and easier to extend in the future.

public class W ndow {
public Wndowint width, int

height) { ... }
public void setSize(int width, int
height) { ... }
public bool ean overl aps(W ndow w) {
}
public int getArea() { . . . }

}

Answer 40:

Thiscaseisinteresting. At first Sight, it seems
reasonable that awindow should haveawidth and a
helght. However, consder the future. Let'simagine
that we want to support arbitrarily shaped windows
(whichwill bedifficult if the Window cdlassknowsal
about rectangles and their properties) .

We'd suggest abstracting the shape of the window out
of the Window classitsdlf.

public abstract class Shape {
1.,
public abstract bool ean
over | aps(Shape s);
public abstract int getArea();
}

public class Wndow {
private Shape shape;

public W ndow(Shape shape) {
t hi s. shape = shape;

}
public void set Shape(Shape shape) {
t hi s. shape = shape;

,

publ i c bool ean overl aps(W ndow w) {
return shape. overl aps(w. shape);
}

public int getArea() {
return shape. get Area();
}

}
Note that in this gpproach we've used delegation

rather than subclassing: awindow isnot a"kind-of"
shape—awindow "has-a' shape. It uses a shapeto
doitsjob. Youll often find del egation useful when
refactoring.

We could aso have extended this example by
introducing a Javainterface that specified the methods
aclass must support to support the shape functions.
Thisisagood idea. It means that when you extend the
concept of a shape, the compiler will warn you about
classesthat you have affected. We recommend using
interfaces thisway when you delegate dl the functions
of some other class.

Exercise 41:

from Code That's Easy to Test

Design atest jig for the blender interface described in
the answer to Exercise 17. Write ashdll script that will
perform aregression test for the blender. Y ou need to
test basic functiondity, error and boundary conditions,
and any contractual obligations. What restrictions are
placed on changing the speed? Arethey being
honored?

Answer 41:

Firg, well add amain to act asa unit test driver. It
will accept avery smdl, smplelanguage asan
argument; "E" to empty theblender, "F' tofill it, digits
0-9 to set the speed, and soon .

public static void main(String
args[]) {
// Create the blender to test
dbc_ex bl ender = new dbc_ex();
/! And test it according to the
string on standard i nput
try {
int a;
char c;
while ((a = Systemin.read()) !=

-1) |
¢ = (char)a;

if (Character.isWitespace(c)) {
conti nue;

}
if (Character.isbDigit(c)) {

bl ender . set Speed(Character.digit(c, 10));

}
el se {
switch (c) {
case 'F': blender.fill();
br eak;
case 'E : blender.empty();
br eak;
case 's':

Systemout. println("SPEED. " +

bl ender . get Speed());
br eak;
case 'f': System
out.println("FULL " +

bl ender. isFull());

break;
default: throw new

Runt i meExcepti on(
"Unknown Test

directive");

}
}
}

}
catch (java.io.|OException e) {

Systemerr.println("Test jig
failed: " + e.getMessage());

}

Systemerr .println("Conpleted
bl endi ng\ n");

System exit (0);

}
Next comes the shell script to drive the tests.

Exercise
42: from The Requirements Pit

Which of the following are probably genuine requirements? Restate those that are not to make
them more useful (if possible).

1.

The response time must be |ess than 500 ms.

Diaog boxeswill have agray background.

The application will be organized as anumber of front-end processes and a back-end
server.

If auser enters non-numeric charactersin anumeric field, the system will begp and not
accept them.

The application code and data must fit within 256kB.

Answer
42:

| | @ve RuBoard

This statement sounds like ared requirement: there may be congtraints placed on the
application by itsenvironment.

Even though this may be a corporate standard, it isn't a requirement. It would be better
stated as " The dial og background must be configurable by the end user. As shipped, the
color will begray." Even better would be the broader statement "All visua dements of the
goplication (colors, fonts, and languages) must be configurable by the end user.”

This statement is not arequirement, it's architecture. When faced with something like this,
you haveto dig deep to find out what the user isthinking.

The underlying requirement is probably something closer to "The system will prevent the
user from making invaid entriesin fields, and will warn the user when these entries are
mede."

This statement is probably a hard requirement.

A solution to the Four Posts
puzzle posed on page 213.

	Starting Page
	Table of Content
	Front Matter
	Foreword
	Preface
	Who Should Read This Book?
	What Makes a Pragmatic Programmer?
	Individual Pragmatists, Large Teams
	It's a Continuous Process
	How the Book Is Organized
	How the Book Is Organized

	Chapter 1. A Pragmatic Philosophy
	The Cat Ate My Source Code
	Software Entropy
	Stone Soup and Boiled Frogs
	Good-Enough Software
	Your Knowledge Portfolio
	Communicate!
	Summary

	Chapter 2. A Pragmatic Approach
	The Evils of Duplication
	Orthogonality
	Reversibility
	Tracer Bullets
	Prototypes and Post-it Notes
	Domain Languages
	Estimating

	Chapter 3. The Basic Tools
	The Power of Plain Text
	Shell Games
	Power Editing
	Source Code Control
	But My Team Isn't Using Source Code Control
	Source Code Control Products
	Debugging
	Text Manipulation
	Exercises
	Code Generators

	Chapter 4. Pragmatic Paranoia
	Design by Contract
	Dead Programs Tell No Lies
	Assertive Programming
	When to Use Exceptions
	How to Balance Resources
	Objects and Exceptions
	Balancing and Exceptions
	When You Can't Balance Resources
	Checking the Balance
	Exercises

	Chapter 5. Bend or Break
	Decoupling and the Law of Demeter
	Metaprogramming
	Temporal Coupling
	It's Just a View
	Blackboards

	Chapter 6. While You Are Coding
	Programming by Coincidence
	Algorithm Speed
	Refactoring
	Code That's Easy to Test
	Evil Wizards

	Chapter 7. Before the Project
	The Requirements Pit
	Solving Impossible Puzzles
	Not Until You're Ready
	The Specification Trap
	Circles and Arrows

	Chapter 8. Pragmatic Projects
	Pragmatic Teams
	Ubiquitous Automation
	Ruthless Testing
	It's All Writing
	Great Expectations
	Pride and Prejudice

	Appendix A. Resources
	Professional Societies
	Building a Library
	Internet Resources
	Bibliography

	Appendix B. Answers to Exercises

